
Multigrid Methods on ParaHel Computers
- a Survey on Recent Developments

Oliver A. McBryan
Paul 0 .. Frederickson

Johannes Linden
Anton Schuller

Karl Solchenbach
Klaus Stuben

Clemens-August
Ulrich Trottenberg

ClJ-CS-504-90

DEPARTMENT SCIENCE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1990 2. REPORT TYPE

3. DATES COVERED
 00-00-1990 to 00-00-1990

4. TITLE AND SUBTITLE
Multigrid Methods on Parallel Computers - a Survey on Recent
Developments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado,Department of Computer
Science,Boulder,CO,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
M ultigrid methods have been established as being among the most efficient techniques for solving complex
elliptic equations. We sketch the multigrid idea emphasizing that multigrid solution is generally obtainable
in time directly proportional to the number of unknown variables on serial computers. Despite this, even
the most powerful serial computers are not adequate for solving the very large systems generated, for
instance by discretization of fluid flow in three dimensions. A breakthrough can be achieved here only by
highly parallel supercomputers. On the other hand, parallel computers are having a profound impact on
computational science. Recently, highly parallel machines have taken the lead as the fastest
supercomputers a trend that is likely to accelerate in the future. We describe some of these new computers,
and issues involved in using them. We describe standard parallel multigrid algorithms and discuss the
question of how to implement them efficiently on parallel machines. The natural approach is to use grid
partitioning. One intrinsic feature of a parallel machine is the need to perform interprocessor
communication. It is important to ensure that time spent on such communication is maintained at a small
fraction of computation time. We analyze standard parallel multigrid algorithms in two and three
dimensions from this point of view, indicating that high performance efficiencies are attainable under
suitable conditions on moderately parallel machines. We also dernonstrate that such performance is not
attainable for multigrid on massively parallel computers, as indicated by an example of poor efficiency on
65,536 processors. The fundamental difficulty is the inability to keep 65,536 processors busy when
operating on very coarse grids. This example indicates that the straightforward parallelization of multigrid
(and other) algorithms may not always be optimal. However, parallel machines open the possibility of
finding really new approaches to solving standard problems. In particular, we present an intrinsically
parallel variant of standard multigrid. This "PSMG" method (parallel superconvergent multigrid) allows
all processors to be used at all times, even when processing on the coarsest grid levels. The sequential
version of this method is not a sensible algorithm.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

80

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE

ACKNOWLEDGlVIENTS SECTION.

Multigrid Methods on Parallel Computers
- a Survey on Recent Developments

Oliver A. McBryan, Paul 0. Frederickson, Johannes Linden
Anton Schuller, Karl Solchenbach, Klaus Stuben

Clemens-August, Thole Ulrich Trottenberg

CU-CS-504-90 December 1990

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430

(303) 492-7514
(303) 492-2844 Fax
mcbryan@ boulder.colorado.edu

Multigrid Methods on Parallel Computers - a
Survey on Recent Developments

Oliver A. McBryan1
'
5 Paul 0. Frederickson2

Johannes Linden3 Anton SchulZe~ Karl Solchenbach4

Klaus Stiiben3 Clemens-August Thole4 Ulrich Trottenberr/' 4
'
6

1Center for Applied Parallel Processing, University of Colorado, Boulder, CO 80309-0430
2RIACS, NASA Ames Research Center, Mail Stop 230-5, Moffet Field, CA 94035, USA
3 Gesellschaft fiir Mathematik und Datenverarbeitung mbH, Postfach 1240, D-5205 Sankt Au-

gustin 1, West Germany
4SUPRENUM GmbH, Hohe Str. 73, D-5300 Bonn 1, West Germany
5Research supported by Air Force Office of Scientific Research, under grant AFOSR-89-0422
6 Research funded in part by means of the Federal Ministry of Research and Technology (BMFT)

(grant No. ITR8601 9) and the Ministry of Economy and Technology of Nordrhein-Westfalen
(MWMT) (project No. 323-8605200).

Abstract

M ultigrid methods have been established as being among the most efficient techniques
for solving complex elliptic equations. We sketch the multigrid idea emphasizing that
multigrid solution is generally obtainable in time directly proportional to the number
of unknown variables on serial computers. Despite this, even the most powerful serial
computers are not adequate for solving the very large systems generated, for instance,
by discretization of fluid flow in three dimensions.

A breakthrough can be achieved here only by highly parallel supercomputers. On
the other hand, parallel computers are having a profound impact on computational
science. Recently, highly parallel machines have taken the lead as the fastest super
computers, a trend that is likely to accelerate in the future. We describe some of these
new computers, and issues involved in using them.

We describe standard parallel multigrid algorithms and discuss the question of
how to implement them efficiently on parallel machines. The natural approach is to
use grid partitioning.

One intrinsic feature of a parallel machine is the need to perform interprocessor
communication. It is important to ensure that time spent on such communication
is maintained at a small fraction of computation time. We analyze standard parallel
multigrid algorithms in two and three dimensions from this point of view, indicating
that high performance efficiencies are attainable under suitable conditions on moder
ately parallel machines.

We also dernonstrate that such performance is not attainable for multigrid on
massively parallel computers, as indicated by an example of poor efficiency on 65,536
processors. The fundamental difficulty is the inability to keep 65,536 processors busy
when operating on very coarse grids. This example indicates that the straightforward
parallelization of multigrid (and other) algorithms may not always be optimal.

However, parallel machines open the possibility of finding really new approaches to
solving standard problems. In particular, we present an intrinsically parallel variant
of standard multigrid. This "PSMG" method (parallel superconvergent multigrid)
allows all processors to be used at all times, even when processing on the coarsest
grid levels. The sequential version of this method is not a sensible algorithm.

Acknowledgements

This paper merges new results and results which have been obtained by the authors
and their co-workers in the fields of parallel computing and multigrid techniques in
the last few years. Several parts of this paper have been published elsewhere before.
The authors have tried to arrange the pieces here in a consistent form.

Our particular thank is given to all co-workers who have - directly or indirectly
contributed to this paper. We want to mention explicitly Ute Gartel, Rolf Hempel,
l\1ax Lemke, Anton Niestegge, Eric van de Velde.

Contents

1 Introduction

2 Parallel Supercon1puters
2.1 Classification of Supercomputer Architectures
2.2 Machine Characteristics of some Multiprocessors . . .

2.2.1 Intel iPSC
2.2.2 Connection lYiachine
2.2.3 SUPRENUM

2.3 A Software Concept Based on Message-Passing .. .

5

8
8

12
12
13
14
15

3 Introduction to 1V1ultigrid 18
3.1 The Basic Idea and Algorithmical Structure 18
3.2 Extensions of the Basic Idea 20

3.2.1 Nonlinear Problems 0 • 20
3.2.2 The Full Multigrid Approach 21

3.3 Multigrid Components, Performance Analysis; Some General Remarks . 21
3.4 Some Special Considerations for Poisson-like Equations, Red-Black-

Relaxation . 23

4 More Sophisticated Multigrid Techniques
4.1 Anisotropic Operators
4.2 First Order Differential Terms

5 Standard Parallel M ultigrid
5.1 Some General Remarks ..
5.2
5.3

Isotropic Equations and Systems
Parallel M ultigrid for Anisotropic Operators

6 Grid Partitioning, General Grid Structures, Implementation As-

25
25
28

30
30
30
32

pects 36
6.1 Grid Partitioning for Regular Grids 36
6.2 Grid Partitioning for the Anisotropic 3D Operator . . 38
6.3 l\!Iore General Grid Structures 40
6.4 Implementation of Parallel Grid Algorithms 41
6.5 Example of a Parallel Grid Program (SUPRENUM) 45
6.6 Communications Libraries 47

7 Multiprocessor Efficiency of Multigrid
7.1 Basic Notations and 1\tfeasures
7.2 A System Model for a Homogeneous Architecture
7.3 Some Results

7.3.1 Analysis of 2D Multigrid Efficiency
7 .3.2 A Concrete 2D Example 0 •••••••

7.3.3 Analysis of 3D Multigrid Efficiency
7.3.4 A Concrete 3D Example 0 •

3

48
48
49
50
50
52
53
53

7 .3.5 Comparison of 2D and 3D Efficiency 54

8 Some Measured Results on Parallel Computers
8.1 Multigrid on Vector Computers
8.2 Multigrid on the Caltech Hypercube
8.3 Multigrid on the Intel iPSC
8.4 Multigrid on SUPRENUM
8.5 Multigrid on the Connection Machine .

9 A Different Parallel Multigrid Approach
9.1 Parallel Superconvergent Multigrid
9.2 The Basic Idea
9.3 Multiscale Convergence Rates .. .
9.4 PSMG: Algorithmic Form

9.4.1 Application to Poisson's Equation ..
9.5 PSMG Performance
9.6 How Does PS:rviG Compare with Standard 1\IG?

4

55
55
56
57
61
62

64
64
64
67
68
68
69
71

1 Introduction

Parallel Computers. Supercomputers are the key to the simulation of a wide range
of important physical problems. Such simulations typically require large numbers
of degrees o"f freedom to provide sufficient resolution, particularly when engineering
accuracy, rather than simple qualitative behavior, is required. In many cases one is
currently limited by available computer resources, rather than by an understanding
of the underlying physics.

As an example, it is very desirable to simulate accurately the flow of air over
a plane. Current aircraft design strategy involves the use of wind tunnels. How
ever wind tunnel testing is limited with respect to aircraft size avd Mach number,
although extrapolations from smaller scale models can overcome some of the limita
tions. Planned wind_ tunnel testing for the Boeing 7J7 was greatly reduced thanks
to advances in computational aerodynamics, substantially curtailing 7 J7 development
time and, consequently, costs. But the computational techniques now in use ·do not
sin1ulate the complete physics for the flow past the entire aircraft; they model various
aspects of the flow that, when combined, give guidance to the design, but not answers.
The major limitation is that as more of the plane is included in the simulation, the nu
merical grids become larger, requiring more processing power and memory. The same
phenomenon is seen in weather forecasting, in oil reservoir simulation, in combustion
studies, and wherever quantitative computations in three dimensions are performed.

Major advances in many of these areas are expected as soon as computer power
increases to about 1 Tflops (= 1012 Flops). This would correspond to an increase
of close to an order of magnitude in resolution in each of the coordinate directions
compared to current machines. Conventional supercomputers with one or a few pro
cessors are limited by various factors, including the need to dissipate energy in a
small volume, effects of the finite speed of light, and bottlenecks related to memory
access. It is widely believed that parallel computers provide the only near-term hope
of reaching this range of con1puter power. Furthermore, in most applications the cost
per megaflop is a relevant issue. Massively parallel computers provide economies of
scale not available to conventional computers larger than a PC. Parallel computers
may be built from lower cost technologies, because the individual processors need not
be extremely powerful.

Because of these factors, parallel computers have been widely studied in recent
years. Substantial research has been accomplished related to these n1achines, in
cluding both theoretical advances, involving algorithm design, and computational
experiments. Hardware advances have reached the point where the fastest available
supercomputers are now highly parallel machines. Furthermore, the combined efforts
of many researchers have demonstrated that parallel computing is feasible.

One disadvantage of a parallel computer, is that it is somewhat harder to program
than a serial machine. Each processor must be assigned a distinct portion of the work
to be performed, and substantial synchronization of the processors is then required in
order to ensure that the results from individual processors are merged appropriately.
The difficulties of programming parallel machines have spawned a whole range of new
research areas for computer science and are a primary reason why this area has been
so dynamic in recent years.

5

Multigrid (MG). For a wide class of problems in scientific computing, in par
ticular for partial differential equations, the multigrid (more general: the multi-level)
principle has proved to yield highly efficient numerical methods. However, the prin
ciple has to be applied carefully: if the "multigrid components" are not chosen ap
propriately for the given problem, the efficiency may be far from optimal. This has
been demonstrated for many practical problems. Unfortunately, the general theories
on multigrid convergence do not give much help in constructing really efficient multi
grid algorithms, though some progress has been made in bridging the gap between
theory and practice during the last few years. The research in finding highly efficient
algorithms for non-model applications therefore is still a sophisticated mixture of the
oretical considerations, a transfer of experie~ces from model to real life problems, and
systematical experimental work. The emphasis of practical research activity today
lies - among others - in the following fields:

• finding efficient multigrid components for really complex problems, e.g.
N a vier-Stokes equations in general geometries

• combining the multigrid approach with advanced discretization techniques: us
ing dynamic local multigrid refinements; adding artificial terms (viscosity, pres
sure, compressibility, etc.) in certain multigrid components; using "double"
discretization, r-extrapolation, defect correction in connection with multigrid
to obtain higher accuracy; using coarse-grid continuation techniques etc.

• constructing highly parallel multigrid algorithms

In this paper, we plan to deal only with the last topic.

Parallel Multigrid. Multigrid methods are known to be "optimal", i.e. the num
ber of arithmetic operations that have to be performed to achieve either discretization
accuracy or fixed accuracy is proportional to the number of discrete unknowns which
are to be calculated [50]. This statement applies directly to standard sequential
MG algorithms. With the availability of parallel computers, the question arises as
to how well MG methods are suited for parallel computing. Several authors have
studied the parallel implementation of multigrid on different parallel architectures
(9, 10, 28, 29, 42, 51].

Sometimes one finds the conjecture that MG is - in some sense - an essentially
sequential principle, or the opinion that full ~1G efficiency is obtained only on se
quential computers and that there is always a loss of efficiency for MG on parallel
architectures. Certainly, standard MG requires a sequential processing of the different
grid levels. We do not intend to give a final answer to this question, but we want to
contribute to a clarification of the situation.

First, one may distinguish the approaches where standard MG algorithms are
utilized in the parallel context from those approaches where essentially new MG algo
rithms (or better: MG-like algorithms) are designed specifically for parallel comput
Ing.

To the class of new MG-like algorithms belong also all those attempts where several
multigrid levels are simultaneously processed. Such methods have been considered by

6

a number of authors [17, 19]. A breakthrough has, however, not yet been achieved;
for theoretical reasons, one may also doubt whether these approaches can give a
substantial gain.

A new M G idea that provides significant progress for massively parallel machines
has been introduced recently by the first author together with Paul Frederickson [13,
14, 15, 16]. Here on each level several coarse grid problems are solved simultaneously
in order to improve the MG-convergence. We sketch this "parallel superconvergent
multigrid method" in Chapter 9.

7

2 Parallel Supercomputers

scalar
floating-

point units

pipelined
floating

point units

scalar
floating-

point units

pipelined
floating

point units

SIMD

class 1
scalar computers (SISD)

(IBM, DEC)

class 2
vector computers

(CRAY 1, Convex)

class 5
scalar array processors
(DAP, GF-11, CM-1,

MASSPAR)

class 6
pipelined array processors

(CM-2)

MIMD

class 3
scalar

sm-multiprocessors
(RP-3, Myrias,
BBN Butterfly)

class 4
vector

sm-multiprocessors
(Alliant,

CRAY Y-MP, CRAY 2)

class 7
scalar

dm-multi processors
(NCUBE, iPSC/1,
Meiko, Parsytec)

class 8
pipelined

dm-multiprocessors
(SUPRENUM, iPSC/2)

Figure 1: Classification of parallel and supercomputer architectures

2.1 Classification of Supercomputer Architectures

s
h
a
r
e
d

m
e
m
0
r
y

d
1
s
t
r
i
b
u
t
e
d

m
e
m
0
r
y

There are many different approaches to the classification of computer architecture,
especially with respect to parallel processing. A classification may be based on quan
titative aspects (the degree of parallelism or the granularity), the structure of the
control-flow (SIMD, MIMD, data-driven, demand-driven), the hardware technology
(VLSI, VHSIC, air cooled, liquid cooled) or the topology of the processing elements
and the memory units. For a taxonomy of parallel designs see [46].

In this section, we - n1ore pragmatically than systematically - distinguish 8 classes
of architectures which play an important role in the supercomputer world. The basic
classification categories represented in Figure 1 are:

1. SIMD vs. MIMD (vertical line)
SIMD operation mode means that parallel functional units execute the same
instruction sequence on different data. The two best-known realizations of the

1 8

SIMD principle are pipelined floating point units (class 2, 4, 6, 8) and array
processors (class 5 and 6).

The MHviD principle (class 3, 4, 7, 8) is the favorite operation mode for mul
tiprocessors based .on entire and independent processors. Each processor may
execute a different instruction stream within the same application.

2. Shared vs. distributed memory (horizontal line)
One of the central problems to be solved in the design of multiprocessor systems
is memory access. Basically, there are two possibilities for system organization:

• shared memory:
each processor has direct access to the total memory.

• distributed memory:
each processor has direct access only to its own private memory.

Sometimes both memory organization types are combined in hierarchical mem
ory systems (e.g. RP3).

Furthermore, in which category a system is placed, may reflect the user's view
of the memory organization rather than its hardware realization. The BBN
Butterfly and Myrias SPS-2, for instance, are multiprocessor systems with dis
tributed memory units which are interconnected by a network. Both machines
offer a shared memory model to the user and are therefore often regarded as
shared memory systems (class 3) although the hardware looks more similar to
distributed memory machines (class 7).

3. Scalar vs. pipelined floating point units (dashed horizontal line)
Scalar floating point units are restricted in their floating point performance.
Presently, the most cost effective way to achieve floating point rates of 20 - 50
Mflops or more (per node) is by utilizing vector or scalar-pipelined processing
(e.g. Weitek chips or Intel's i860). MIMD multiprocessors which target the top
of supercomputer performance have to employ such processors as basic floating
point units. Therefore, the most powerful architectures today are often two-level
MIMD /SIMD multiprocessor systems (class 4 and 8). The efficient use of these
architectures requires parallelism on two levels: the coarse grain parallelisn1
related to the global MIMD structure and the fine grain parallelism (pipelining
or vectorization) which is necessary to achieve maximum node performance.
Similarly, the Connection Machine CM-2 is an SIMD /SIMD two-level system
(class 6), also using fine grain vectorization.

In the following we briefly describe these 8 classes of supercomputer architectures
and name typical representatives of them.

Class 1: scalar computers
The "traditional" von Neumann computer architecture (SISD) is the basis for main
frames, n1inicomputers, and microcomputers. Using current hardware technology, the
floating point performance of such architectures seems to be far from supercomputer
performance, except on truly scalar algorithms.

9

Class 2: vector computers
Historically the first machines to be called supercomputers were vector computers.
Their hardware architecture is based on very fast arithmetic pipelines which support
the rapid execution of vector instructions operating on all components of the vec
tor operands simultaneously. Vectors in that sense consist of components which can
be processed independently. Hence, vector processing is a special form of parallel
processing based on fine grain parallelism. Application codes have to be vectorized
(i.e. operations are defined on vectors and certain data dependencies between op
erations are excluded) in order to exploit the potential speed of the hardware. The
need for vectorization resulted in new vector algorithms and in special compiler tools
(vectorizers) for the automatic vectorization of existing codes. ,

Examples of current vector machines are the CRAY Y-MP, the CYBER 205, the
ETA-10, the Fujitsu VP, the N~C-SX, the Hitachi S-810, and the IBM 3090-VF.

Due to the technological progress in VLSI chip development vector computer ar
chitectures today can also be realized in standard (microcomputer) technology. These
systems are smaller, somewhat slower and considerably cheaper than the classical vec
tor computers and therefore are called minisupercomputers. The vector-minisuper
computers take advantage of the existing software and tools for vector machines -
some systems are even CRA Y-compatible. Examples are the Convex C2 and the
SCS-40.

Class 3: shared memory scalar multiprocessors
Another way to increase computing performance is to corubine several single processors
into a multiprocessor system and replace sequential processing by parallel processing.
The optimal degree of parallelism (fine or coarse granularity) depends on the number
and the power of the single processors as well as on the memory organization. The
shared memory concept restricts the number of CPU s to about 8 or 16 today (e.g. the
Alliant). If the memory is accessed via a network rather than a direct interconnection
a larger number of CPU s can be connected at the cost of longer access times. Examples
are the IBM RP-3 and the CEDAR project (=clusters of Alliant systems). Further
examples in this class are the Sequent, Flexible, Encore, Concurrent Computers, and
(at the software level) Myrias machines.

Class 4: shared n1emory vector multiprocessors
The step from a single processor to a multiprocessor system (class 1 to class 3) is, of
course, also possible and obvious for vector computers (class 2). Similarly as for scalar
multiprocessors the performance is increased by combining several vector CPU s into
multiprocessor systems, with of course the same memory access problems. The shared
mernory concept limits the number of vector processors (typically today ::; 8). The
parallelism on these systems is often used to increase the throughput of the system
(running different jobs on different CPUs) but not the execution speed of an individual
job. However, MIMD-parallel as well as SIMD-like processing is also possible (e.g.
using macrotasking or microtasking constructs on the CRAY Y-MP). Representatives
of this class are the multi-headed versions of the CRAY Y-MP, CRAY 2, and the
ETA-10.

10

Class 5: scalar array processors
The era of parallel computers started with array processors which perform one in
struction simultaneously on an array of operands (i.e. in SIMD mode). Recently
these systems have been upgraded to massively parallel multiprocessors (with many
thousands of processors). Each pro.cessor is relatively small and weak but the enor
mous degree of parallelism results in supercomputer performance. Typically, these
systems are used for a restricted class of special applications such as image process
ing. We mention here the historical Illiac IV, the Goodyear MPP, the ICL DAP, the
original Connection Machine CM-1, and the MASSPAR.

Class 6: pipelined array processors
The combination of (SilVID) array and pipelined (vector) processing has been realized
in the Connection Machine 2 which presently is the system with the highest floating
point performance. rate for appropriate applications on regular data structures.

Class 7: scalar distributed memory multiprocessors
Today, multi processor systems with a large (and in principal unlimited) number of
processors require that the memory units are physically associated with the processors
(distributed memory). The basic unit of such a system, consisting of the CPU, the
arithmetic coprocessor, the memory, and the communication unit will be called a node
in the following. The first prototypes of this class were based on hypercube topologies
and were built at the California Institute of Technology. Intel's iPSC/1 was the first
commercial product, followed by Ncube and Symult. Recently Intel introduced its
second generation based on more powerful nodes but the same hypercube structure,
and is planing a third generation based on a grid rather than hypercube topology.
Multiprocessor systems with transputer nodes have also entered the market (Meiko,
Parsytec). While listed earlier under shared memory systems, the Myrias SPS-2
system belongs in this category based on its hardware design.

Class 8: pipelined distributed memory multiprocessors
These systems combine the advantag_es of the vector and the parallel processing con
cepts. The multiprocessor architecture is derived from the class 7 machines whereas
the node architecture is taken from low-cost pipelined computers (class 2). The basic
idea is to combine powerful pipelined nodes, with their attractive costjperforrnance
ratio, into a multiprocessor system. Due to the size and the cost of a single node,
their number is in practice limited to several thousands. The computational speed of
the nodes in turn imposes strong requirements on the speed of the communication.
If the communication problem is solved satisfactorily these machines are among the
most powerful supercomputers existing today. Systems currently entering the market
are SUPRENUM and the Intel iPSC /860.

The classification of parallel con1puters in Figure 1 is by no means unique and
complete. An important classification category which is not taken into account in
Figure 1 is the hardware technology. Systems based on VHSIC hardware (like the
CRA Y and ETA systems) are much more powerful (and expensive) than systems
based on microcomputer technology (like the Alliant) although they belong to the
same class.

11

Furthermore, there is an enormous variety in the current designs, particularly in
the inter-connection topologies. While many interesting parallel machines involve
only a few processors, we will concentrate in this paper on those machines which
have moderate to large numbers of processors. Important classes of machines such
as the CRAY Y-MP, CRAY 2 and ETA-10 are therefore omitted from many of the
subsequent discussions.

2.2 Machine Characteristics of some Multiprocessors
There are at least 100 parallel computer projects (classes 3 to 8) underway at this time
worldwide. While some of these projects are unlikely to lead to practical machines,
a substantial number will probably lead to useful prototypes. In addition, several
commercial parallel computers are already or have been in production (e.g., ICL DAP,
Denelcor HEP, Intel iPSC, NCUBE, FPS T-Series, Connection Machine, MASSPAR,
SUPRENUM, Symult 2010, Myrias SPS-2, Evans and Sutherland ES-1, Meiko, Par
sytec) and more are under development. One should also remember that the latest
CRAY computers, (e.g. CRAY X-MP, CRAY 2 and CRAY Y-MP) involve multiple
processors, and other vector computer manufacturers such as ETA Systems, NEC,
Fujitsu and Hitachi have similar strategies.

In this section we will look briefly at the characteristics of several parallel machines
that were used to measure multigrid performance in later chapters. The machines
considered here in more detail are the Intel iPSC, the Connection Machine CM-2 and
the SUPRENUM-1.

2.2.1 Intel iPSC

The Intel iPSC was the first commercial hypercube MIMD-computer, and has been
the most widely available highly parallel computer in recent years. Built from 128 In
tel 80286 processors, peak computer power of the original iPSC/1 is under 10 Mflops,
yet the iPSC was the basis for a large number of useful experiments in parallel com
puting. The iPSC /2 computer is a second gen.eration machine that provides greatly
increased processing power and communication throughput. Each node contains an
80386 microprocessor with up to 8 ~Ibytes of memory (extendible to 16Mbytes with
64 processors). There are three available numeric co-processors: an Intel 80387 co
processor (300 Kflops), a Weitek 1167 scalar processor (900 Kflops) and a VX vector
board (6 Mflops double precision, maximum of 64 nodes). Thus the top-rated system
has 64 nodes capable of 424 Mflops double precision (64 bit) and 1280 Mflops sin
gle precision (32 bit). Special communication processes allow message circuits to be
established between remote processors without intervention from intermediate nodes.

In fall1989 Intel announced an i860-based version of the older iPSC/2 hypercube
system. These iPSC /860 systems are basically standard iPSC /2 hypercubes with the
node processors replaced by Intel i860 processors. In terms of raw floating point per
formance the peak rate is thereby increased to 60 Mflops per node (64 bit). In practice
it is unlikely that more than 40 Mflops per node can be realized due to the memory
model used by the i860. Some simple vector type kernels, hand-coded in assembler,
are currently running from 28 to 38 Mflops/node. Well-designed Fortran programs

12

are currently yielding about 3-4 Mflopsjnode due to the state of the i860 Fortran
compilers. Several major i860 compiler efforts are underway and will undoubtedly
improve substantially on the early results. Because the communication facilities of
the iPSC /860 are those of the iPSC /2, the system is constrained to a maximum of
128 nodes.

While the iPSC /860 utilizes the slow iPSC /2 communication hardware and soft
ware, communication proves to be much faster on the i860 system than on the iPSC /2.
This is because most of the message startup communication overhead is software over
head involved in negotiating the communication protocol. Because the i860 is so much
faster than the 80386, the software overhead is correspondingly decreased. The effect
is to reduce messaging time by about a factor of three. •

The iPSC /860 actually supports heterogeneous boards - a mixture of i860 and
80386 boa~ds is allowed. This permits special 80386 nodes to take advantage of the
flexible interfaces to graphics, disk and other peripherals available to that processor.
For example 780 l\1byte disks may be attached to such nodes via a 4 Mbyte/sec SCSI
interface. Frame buffers, VME bus devices and Ethernet also plug into these boards.

Intel has also announced plans to develop a rectangular version of the iPSC /860
- the iPSC /3. This system is very similar in architecture to the earlier Symult 2010
system. There are 8 communication paths per node, allowing 4 bidirectional channels
as required for a two-dimensional grid. With the new communication structure, the
iPSC will be freed from the constraint of a maximum of 128 nodes. Indeed Intel has
announced a 2048 processor version of the iPSC /3, called Touchstone. A prototype
to be completed in spring 1991, will have 576 processors.

2.2.2 Connection Machine

The Connection Machine CM-1 designed by Thinking Machines Corp., has 65,536
1-bit processors, though this may be regarded as a prototype for a machine that
might have 1 M processors. While designed primarily for artificial intelligence work
and image processing, this machine proved to have potential applications to scientific
computing and database applications. The later CM-2 computer adds 2048 Weitek
floating point processors and 8 Gbytes of memory, to provide a powerful computer for
numerical as well as symbolic computing. The CM computers are Sll\1D machines.
All processors receive the san1e instruction on each cycle. Logic is supported by allow
ing individual processors to skip the execution of any instruction, based on the setting
of a flag in their local memory. The CM machines are based on a hypercube com
munication network, with a total communication bandwidth of order 3 Gbytes/sec.
Communication is by worm-hole type routing. The system supports parallel I/0 to
disks at up to 320 Mbyte/sec, and to frame buffers at 40 Mbytejsec.

Connection Machine software consists of parallel versions of Fortran, C and Lisp.
In each case it is possible to declare parallel variables, which are ~utomatically al
located on the hypercube. Programs execute on a front end machine, but when
instructions are encountered involving parallel variables, they are executed as parallel
instructions on the hypercube. The system supports the concept of virtual proces
sors. A user can specify that he would like to compute with a million (or more)
virtual processors, and such processors are then similar to physical processors in all

13

respects except speed and memory size. A typical use is to assign one virtual pro
cessor per grid point in a discretized application. This provides a very convenient
programming model. Parallel global memory reference is supported using both reg
ular multi-dimensional grid notations (NEWS communication) and random access
(hypercube) modes.

The Connection Machine is one of the few examples where a program from a
serial machine (e.g. work station) or from a CRAY may be moved to a parallel
machine and run essentially without change. The CM-2 Fortran is Fortran-77 with
the addition of the array extensions of Fortran 90. All array data types and operators
are implemented as parallel objects or operators on the CM-2. In the case of Fortran-
77 programs, a preliminary vectorizer is available that prod-qces Fortran 90 as output.
Because of the SIMD architecture no synchronization instructions are required.

It is extre_mely rare to approach the 24 Gflops peak rate of the CM-2. In practice
one attains about 10% to 20% of that rate. In part this is because in addition to
normal hypercube communication (e.g. to nearest neighbors in a grid) there is also
extra communication required for every floating point operation. Since the floating
point operations are off-chip, each of the 32 bit-serial processors that share a Weitek,
must send its data to the Weitek for processing. Furthermore, since the data arrives
bit-serially, it needs to be "transposed" so as to be presented as floating point data
to the Weitek. These two steps between the processors and the Weitek units account
for much of the performance loss. Standard numerical algorithms such a.s relaxations
or conjugate gradient iterations perform at from 2 to 4 Gflops, which is also typical
of performance on regular-grid evolution problen1s. Only in situations where num
bers can be deposited in the 64 Weitek registers (shared by 32 processors), and then
computed on for a substantial time without leaving the Weitek, can the theoretical
speed be approached. For example, parallel polynomial evaluation proceeds at up to
20 Gflops - which ensures that transcendental functions are extremely fast on the
system. A new Fortran compiler for the CM-2 now supports the programming of the
Weitek processors and allows applications to run at 4-6 Gflops.

2.2.3 SUPRENUM

The German SUPRENUM project involves coupling up to 256 processors ("nodes")
with a two-level network of fast busses. The concept combines the flexibility of an
overall MIMD system with the cost-effectiveness of SIMD-vector processing in each
node. A node consists of a standard microprocessor CPU, 8 Mbyte of private memory,
a fast floating-point vector unit (10 Mflops peak perfonnance, 20 Mflops with chaining)
and dedicated communication hardware.

Up to 16 of these computing nodes are cornbined into a "cluster" using a bus
called the cluster bus (256 Mbytes/ sec). Each cluster also contains a local disk, a
disk controller node, a monitor node which supports performance measurements , a
communication node for the connection to the upper bus level (the SUPRENUMBUS).

As shown in Figure 2, 16 clusters are connected by a 4D hypercube structure
(= 4 x 4 torus) of serial high-speed SUPRENUMBUS's.

The SUPRENUM-1 prototype is completed by a front end system which is used
for operating and maintaining the high performance kernel as well as for software

14

• • •

clusterbus

link to
SUPRENUMBUS

Figure 2: Structure of the SUPRENUM-1 prototype with 256 nodes in 16 clusters

development.
Essential investments in the SUPRENUM development have been made for system

and application software. Figure 3 gives an overview of the SUPRENUM system
software, showing that the abstract S"GPREKTJM architecture is the central model
here. It is described in Section 2.3.

The very high speed of the bus network makes this a very interesting machine
for a wide range of applications, including those requiring long-range communication.
No more than three communication steps are ever required between remote nodes.
A prototype containing 4 clusters (64 processors) is already in operation, and a full
machine with 16 clusters will be available by the end of 1990.

2.3 A Software Concept Based on Message-Passing

For MIMD multiprocessor computers with local memory, a software concept has
turned out to be suitable that is based on a process system and on a message-passing
communication handling. The process concept for SUPRENUM (the so-called abstract

15

Operating system

Performance
analysis

Abstract SUPRENUM architecture

Programming environment
Software tools

Figure 3: The SUPRENUM system software

SUP RENUA1 architecture) is a dynamic one which is characterized by the following
elements:

• Processes are autonomous program units which run in parallel.

• Processes can terminate themselves, and can create but not terminate other
processes.

• Processes communicate only by exchange of messages, and no shared memory
is available.

• Applications are started by one initial (or host) process typically running on the
front end machine.

• In arithmetic expressions and communication instructions, array constructs are
supported.

• The user-defined process system is homogeneous and independent from the ac
tual hardware configuration.

16

Processes are mapped to the real hardware at run-time. In SUPRENUM a mapping
library [31 J provides optimized mapping strategies for some standard process systems
(like trees, rings, grids) and uses heuristical strategies for irregular process structures.

17

3 Introduction to Multigrid

In the following, we briefly describe the basic structure of a general multigrid method
(abstracted from [38], Section 2). For more details and discussions, we refer to the
available introductory publications on multigrid methods.· In particular, we recom
mend the proceedings [24], which, besides a collection of several specialized papers,
contain three introductory contributions [5, 22, 50]. Other recommendable publica
tions are [8], which is a more recent one of introductory type, and [23]. A multigrid
bibliography up to 1986 can be found in [4].

In this paper we do not consider multigrid methods in a finite element context
(see [1, 39, 43J.or [4] for further references).

3.1 The Basic Idea and Algorithmical Structure
We first consider the case of a linear, scalar elliptic boundary value problem. The
discretization of such a problem on a uniform grid of mesh size h yields a linear
NxN-system of equations (N being proportional to 1/h2

) which we denote by_

(1)

Here, one may regard Lh as a matrix and uh, fh as vectors. In the context of multigrid
methods, however, it is more convenient to consider (1) as a grid equation, i.e., Lh as
an operator acting on grid functions and uh, Jh as grid functions. Here and in the
following we will write exact solutions of grid equations in upper case letters, e.g., the
solution of (1) will be denoted by uh.

Solving (1) by means of classical methods such as elimination or relaxation is
rather expensive if the number of unknowns is large. Standard relaxation methods
are particularly inefficient. For instance, in the case of second order 2D elliptic equa
tions, solving (1) by means of Gauss-Seidel relaxation (up to a fixed accuracy) needs
computational work which is proportional to .lV2 or 1/h4

• Using accelerated methods
like SOR, the best one can do is to reduce the work to be proportional to N 312 which
is still very unsatisfactory in practice.

On the other hand, relaxation methods of Gauss-Seidel type are highly efficient in
terms of error smoothing. To demonstrate this: consider point Gauss-Seidel applied to
the discretized Poisson equation, which means that we solve the following equations
point by point in some order

h 1(h 1 h h h 2 h U;J· = - U.; 1 J. I U.;..l..l J. + U.; . 1 + U· J. I 1 - h f.;J·), • 4 •- J • I 1 • 1J - t j T •
(2)

using the most recent approximations for the values on the right hand side. Thus, in
terms of the error vh = Uh - uh,

h 1(h h h h)
vij = 4 vi-1,j + vi+l,j + vi,j-1 + vi,j+1 ·

This is just an averaging process, which explains heuristically why the error becomes
smooth after very few relaxation sweeps. Although the situation here is quite special,
relaxation methods with similarly good smoothing properties exist under quite general

18

circumstances. In fact, there is a close relation between ellipticity and the possibility of
efficient smoothing (cf. Section 3.3). However, the simple point Gauss-Seidel method
will usually not suffice as an effective smoother.

The goal of any multigrid method is to exploit smoothness by the use of coarser
grids. Since the errors become smooth by relaxation (rather than the approximations
themselves), coarse-grid corrections make sense only in terms of the error. Note that
for any approximation u~ld of (1), its error Vh == Uh - u~zd satisfies the correction
equation Lhvh == rh with the residual rh == fh - Lhu~ld. Now, if Vh is sufficiently
smooth, it makes sense to approximate it by solving a coarse-grid-correction {CGC)
equation of the form

(3)

where the (formal) index H marks coarser-grid quantities. Here, LH denotes a reason
able discretization of the same differential operator on the coarser grid and If! denotes
some restriction which maps fine-grid functions by local averaging into coarse-grid
functions. The coarser grid itself may be co::1structed by simply doubling the mesh
size h in all coordinate directions: H == 2h. This coarsening strategy, which is the
one most frequently used, is called standard coarsening. However, since other choices
will be discussed later, we keep the above formal notation.

By interpolating the solution yH of (3) back to the finer grid (using some in
terpolation operator I'H), we finally obtain a new approximation to the solution of
(1):

h - h I Ih yH
Unew- Uozd T H •

Summarizing, we present the formal structure of a general (iterative) two-grid method.
Starting with u~zd, one iteration step (one cycle) of such a method proceeds as follows
(cf. Section 2.3 in [50]):
(1) Pre - smoothing : Compute uh by applying v1 ~ 0 sweeps of a given relaxation

method to (1) with starting guess u~zd:

uh == RELAXv1 (u~zd; L\fh)

(2) Coarse - grid correction :
-Computation and restriction of residual rH == I/!(Jh- Lhuh)
- Computation of the exact solution VH of L HvH == rH
- Interpolation and correction uh == uh + I'H v H

(3) Post - smoothlng : Compute u~ew by applying v2 '2::: 0 sweeps of the
given relaxation method to (1) with starting guess uh:

For relaxation methods with good smoothing properties, v1 and v2 are small numbers,
typically 1 or 2 (cf. the discussions in later sections). Such a two-grid method,
although reflecting the main principles, is generally not suitable for an efficient use
in practice. Solving the CGC equation (3) is still too expensive because the "coarse
grid" is still very fine. However, as the method is iterative anyway, there is no need
to compute VH exactly. The most natural way to approximate VH is to apply the
same idea as described above to the CGC equation itself, using a still coarser grid.

19

More precisely, we replace V H by an approximation vH which is obtained by applying
1 ~ 1 two-grid cycles to (3), starting with the zero grid function as first guess. By
extending this idea in a recursive way to a sequence of coarser and coarser grids, we
finally obtain a complete multigrid cycle. For more details and a flow chart see Sections
4.1, 4.2 in [50]. The parameter 1 controls the accuracy to which the CGC equations
are approximated. The smallest possible choice, 1 = 1, is usually sufficient. Safer,
but really needed only in "less regular" situations, is the choice 1 = 2 (cf. Section
4.2). Corresponding cycles are often referred to as V- and lV-cycles, respectively. In
practice, for reasonable multigrid methods, larger values of 1 are not needed. Apart
from V- and W-cycles, we also consider F-cycles in some parts of this paper. The
F-cycle neyds more work than a V- but less than a W-cycle. It has been described,
for instance, in [52].

3.2 Extensions of the Basic Idea

In the following, we introduce two important extensions of the procedure outlined
above, namely, the treatment of nonlinear equations by means of the F AS-approach
and the full multigrid (FMC) strategy. For more details, see [6], [50].

3.2.1 Nonlinear Problems

One obvious way to solve nonlinear problems is to linearize the given differential
problem globally (e.g., by a Picard-lil~e method: freezing non-linear expressions to old
approximations, or by Newton's method, which is generally more robust) and then
to solve the resulting sequence of linear problems by a linear multigrid method of
the form described above. Another possibility is to suitably generalize the ideas de
scribed in the previous section. The resulting approach is called the full approximation
scheme (FAS) and is - from a multigrid point of view - not only conceptually more
straightforward (no global linearizations are needed) but in many cases also more
efficient.

Assuming (1) to be nonlinear in u\ we point out that smoothing can be performed
as in the linear case merely by replacing relaxation by corresponding non-linear vari
ants. Due to the lack of a superposition principle, however, we can no longer compute
corrections on the coarser grids as in the linear case: instead of con1puting "correction
quantities", we have to solve for "solution quantities". We still have to interpolate
smooth quantities back to the finer grids to update old approximations. This leads to
the following two-grid process for nonlinear problems. Its generalization to a complete
FAS multigrid cycle is done in the same straightforward way as in the linear case.
(1) Pre - smoothing : Compute v;h by applying v1 ~ 0 sweeps of a given

(non-linear) relaxation method to (1) with starting guess u~zd:

(2) Coarse- grid correction :
- Computation and restriction of residual rH =If! (fh- Lhu;h)
- Restriction of current approximation v;H = IIf u;h
- Computation of the exact solution uH of LH UH = rH + LHuH

20

- Computation of correction yH = uH- v;H
- Interpolation and correction uh = uh + I'H v H

(3) Post - smoothing : Compute u~ew by applying v2 2:: 0 sweeps of the
given relaxation method to (1) with starting guess uh:

uh = RELAXZ-12(uh· Lh fh)
new ' '

Compared to the linear case, only the computation of the coarse-grid correction
VH has changed. The fine-to-coarse transfer of the temporary approximation v;h is
done by means of some local averaging .ll~ which may be different from If!. One
possibility is to define v;H at each coarse-grid point to have just the value of v;h at
the corresponding fine-grid point (straight injection). This simplest definition is the
standard one and can safely be used unless the solution of (1) is expected to be
strongly varying with respect to the scale of the grid.

Note that, for linear problems, the new procedure is exactly equivalent to the
former one (independent of the concrete choice of II~). Note also that, assuming
straight injection for .Uf, convergence of the above cycle implies that the solution
UH of the coarse-grid equation approaches the fine-grid solution Uh (injected to the
coarser grid) rather than the solution of LH uH = jH.

3.2.2 The Full Multigrid Approach

Once a multigrid cycle with all its necessary components is specified, it can be used
to solve a given problem (1) iteratively. As with any other iterative method, there is
the significant problem of finding a good first approximation. A convenient approach
to finding a reasonable first guess is the combination of an iterative solver with the
idea of nested iteration. This essentially means that, before starting to iterate on the
given grid, one computes approximations on coarser grids which are interpolated to
finer grids until one finally reaches the actual computational grid.

The combination of this idea with multigrid iterations (in contrast to its combi
nation with SOR, say) is called the full multigrid (FMC) method. Because of the
h-independent convergence of proper multigrid iterations, a fixed number of iterations
on each level is sufficient. Moreover, performing just one cycle on each level (includ
ing the finest one), will generally suffice to yield a final approximation of (1) which
is numerically correct up to h-truncation error without any further iterations on the
:finest level (cf. Section 6 in [50]).

3.3 Multigrid Components, Performance Analysis; Some
General Remarks

The above methods provide only formal schemes. For a practical application the vari
ous components (e.g., discretizations on the finest and the coarser grids, relaxation for
smoothing, coarsening strategy, inter-grid transfer operators, etc.) must be specified.
Generally, this specification is by no means obvious. This is because a proper choice
of the different components depends on certain characteristics of the differential and
discrete problem (ellipticity, relative size of coefficients, singular perturbations, discon
tinuities, etc.) and often also on the solution itself (singularities, solution-dependent

21

coefficients, non-uniqueness, etc.). A detailed discussion would go beyond the scope
of this paper. We want to give, ho'\vever, a brief review of some basic but important
techniques which have turned out to be quite useful in practice.

What is needed is some kind of realistic a priori analysis which, for a concrete
problem, allows one to estimate the interactions between the possible multigrid com
ponents and to predict their influence on the final multigrid performance. The most
natural tool is Fourier analysis, because in terms of Fourier co1nponents one can most
easily distinguish low and high frequency components of any grid function and explic
itly investigate their correct treatment by the CGC step and the relaxation separately.
However, the application of Fourier analysis is feasible in practice only under certain
simplified assumptions: ;

One possibility is to restrict attention to certain fundamental classes of model prob
lems such as li~ear, symmetric, constant coefficient problen1s with Dirichlet, Neumann
or periodic boundary conditions on rectangular domains. For such problems, optimal
multigrid strategies have been developed which turned out to be more efficient than
classicial solvers by orders of magnitude [50]. The major quantities which can ex
plicitly be computed by means of Fourier analysis and which have been used for a
systematic comparison of different multigrid strategies, are the smoothing factor JLv
and the two-grid convergence factor Pv· The latter quantity is just the factor by which
the error is reduced by one two-grid cycle using v relaxation sweeps for smoothing,
while JLv is an approximation to Pv assuming "optimal" CGC behavior. From a dif
ferent point of view, the smoothing factor can be interpreted as the factor by which
high frequency error components are damped by v relaxation sweeps.

Since we will present some concrete results on the above quantities Pv, JLv in the
following chapter, we want to point out their significance: JLv allows one to distinguish
different relaxations with regard to their smoothing qualities (roughly, a value of p1

around 0.5 indicates quite good smoothing, while a value close to 1 is absolutely un
acceptable). The interplay of smoothing and coarse-grid correction is reflected in the
more precise two-grid factor Pv· Thus, significant deviations between these two quan
tities indicate that the coarse-grid components or the inter-grid transfers (or both)
may have been chosen improperly. Assuming that the "nature" of all intermediate
grid problems is comparable to the finest grid problem, Pv can be expected to yield a
quite precise prediction for the convergence rate of a corresponding complete cycle, at
least of the rV-cycle. In practice, provided the coarse grid components are suitable,
JLv gives a sufficient prediction of the behavior of the final multigrid cycle, and is much
easier to compute than Pv·

In more complex situations, the above analysis can no longer be applied rigorously.
In such cases, however, local (or interior) Fourier analysis which has been introduced
and extensively used by A. Brandt [6], is still applicable.

The reader who is interested in more details is referred to [6] which contains
important discussions on this issue and, in particular, general guidelines for designing
relaxation schemes for complex situations. Concerning details on the rigorous "model"
analysis mentioned before, see [50].

22

3.4 Some Special Considerations for Poisson-like Equations,
Red-Black-Relaxation

By Poisson-like equations, we mean equations of the form

a(x,y)uxx + b(x,y)uyy = f(x,y) (4)

with positive functions a, b and a ~ b everywhere in a given domain (similarly in
3D). In the sense mentioned in the previous section, the performance of a multigrid
method does not depend sensitively on the concrete values of the coefficients or on the
shape of the dornain (cf. Section 10 in [50]) or on the particular boundary conditions.
In particular, the incorporation of specific boundary conditions requires only proper
algorithmical adaptations at the boundary itself.

Thus, in order to devise a reasonable multigrid scheme for nearly isotropic prob
lems, discretized by means of standard symmetric differences on a uniform grid of
mesh size h, we may study the corresponding difference equations of the most simple
isotropic model equation, Poisson's equation:

11u = f(x, y),

disregarding boundary conditions. Note that if the discretization step sizes are dif
ferent in each direction, we have a discrete anisotropy, and the discussion of the next
chapter applies. For the isotropic case, plain point Gauss-Seidel relaxation has quite
good smoothing properties. Thus, for any discrete isotropic problem (4), it appears
to be reasonable to use Gauss-Seidel relaxation (with "lexicographic" ordering of grid
points, say) for error smoothing in conjunction with standard coarsening.

More precisely, one may use a sequence of uniform grids of mesh size h, 2h, 4h, ... ,
up to a coarsest grid which contains as many points as necessary for technical reasons,
along with the corresponding symmetric discretizations of the same differential oper
ator (4) and Gauss-Seidel as smoother on each level. The inter-grid transfer operators
are usually not critical. One can safely use linear interpolation for the corrections
and some local averaging in the residual transfers, e.g., the so-called full weighting.
This is defined (in matrix terminology) as the transpose of linear interpolation scaled
such that a constant grid function is mapped into the same grid function on the next
coarser grid. In stencil notation the full weighting operator can be written as

In order to understand the above method more quantitatively, one has to perform
some Fourier analysis as pointed out before. Here, in Table 1, we give only some
results for Poisson's equation in terms of J.Lv and Pv for different values of v. In
particular, we see that J.Lz = 0.250 and p2 = 0.193. Due to the discussions on the
significance of these quantities in the previous section, we can conclude that we have
excellent smoothing and a proper coarse-grid correction. Also, there are no negative
influences from much coarser grids, as the predicted convergence is precisely obtained
in practice when using a complete multigrid cycle. We could have also used v = 3 or

23

problem: ~u = f(x, y)
lexicogr. red-black

1/ f-Lv Pv f-Lv Pv
1 0.500 0.400 0.250 0.250
2 0.250 0.193 0.063 0.074
3 0.125 0.119 0.034 0.053

Table 1: Results obtained by Fourier analysis

even v = 1 smoothing steps for smoothing instead of v 2;· a careful comparison of
the numerical work per cycle versus convergence speed, however, shows that v = 2 is
the most efficient choice.

The above multigrid strategy is just one of a number of possibilities. In Table 1,
we give one more example which is only slightly different from the above strategy. The
only difference is that the order of points in the Gauss-Seidel relaxation is changed to
"red-black", i.e. the points are divided into "red" and "black" points in a checkerboard
fashion, :first all red points are relaxed and then all black points. The resulting method
is seen to be essentially more efficient. Using v = 2 smoothing steps in the multigrid
process will give considerably more than one digit of error improvement per multigrid
iteration. In particular, the latter algorithm is among the most efficient known on
single processor computers: it is more efficient than the one above by about 50%. And,
as we will see in Chapter 5, "red-black" relaxation is well suited for vectorization and
parallelization.

24

4 More Sophisticated Multigrid Techniques

In this chapter (abstracted from [38), Section 3) we would like to discuss certain
situations where the basic multigrid approaches as sketched in the previous chapter
have to be modified and extended. Such situations are

• anisotropic operators, particularly in 3D

• influences of first order differential terms

With respect to systems of equations, we refer to [6].

4.1 Anisotropic Operators

We call equation (4) anisotropic if the coefficients are very different frorn each other
in significant parts of the computational domain. This is a simple example which we
can use to demonstrate that a careless choice of the necessary multigrid components
may lead to quite inefficient solvers. If we apply the algorithm of the previous section
without change, it \vill seriously deteriorate. In fact, the stronger the anisotropy, the
slower the convergence. In our discussion, we will distinguish the 2D- and the 3D-case.

(a) The 2D- case:
Let us consider the anisotropic model equation

c U:z::z: + Uyy = j (X, y) (5)

with some constant 0 < c <t: 1, discretized on a uniform grid as above. Using pointwise
Gauss-Seidel relaxation, the error version of (2) changes to

V~. = 1 (h h h h)
'J 2(1 + c) c vi-l,j + c vi+l,j + vi,j-1 + vi,j+1 (6)

which is essentially an averaging process in the y-direction. Consequently, after a few
relaxation sweeps, errors will become smooth in the y-direction, not, however~ in the
x-direction. If, on the contrary, c >> 1, it is just the other way around. Obviously,
such errors can no longer be efficiently reduced by means of a coarser grid which is
obtained by doubling the mesh size in both directions. Point relaxation and standard
coarsening is not a reasonable combination for anisotropic problems! There are two
possible remedies.

Line - relaxation: The first possibility is to keep standard coarsening but to change
the relaxation procedure such that errors become smooth in both coordinate directions.
This can be achieved by solving simultaneously for those unknowns which are strongly
connected. That is, use Gauss-Seidel line-relaxation ·with the lines parallel to the
y-axis (y-line relaxation) if c << 1, and use x-line relaxation if E ~ 1.

Semi - coarsening: Alternatively, one may keep point relaxation if one changes
the coarsening strategy according to the one-dimensional sn1oothness of errors. Define
the coarser grid by doubling the mesh size only in those directions in which errors are
smooth. That is, double the mesh size only in the y-direction (y-semi coarsening) if
c ~ 1 and in the x-direction if E ~ 1 (x-semi coarsening).

25

Both approaches can be directly applied to anisotropic variable coefficient prob
lems (4) with the proviso: £ << 1 (£ >> 1) represents the case that in some parts of
the computational domain a~ b (a>> b) while in the remaining parts a~ b.

In practice, usually the first approach is used because it leads to quite simple
algorithms even if we do not assume anything about the relative size of the coefficients
a and b, i.e., if we allow that both a ~ b and a >> b hold in different parts of
the computational domain. In such situations, line-relaxation can still be used in
connection with standard coarsening if it is applied alternatingly, i.e., one smoothing
step is just one x-line sweep followed by one y-line sweep. The resulting multigrid
method will, in particular, converge rapidly also in case of isotropic problems; it is,
however, somewhat more expensive than the simpler scheme using point relaxation.

In contrast to this, the second approach requires, in the case of arbitrary coein
cients, semi-coarsening of different direction_s in different parts of the domain depend
ing on the local sizes of the coefficients. The corresponding algorithms are rather
complicated, because the control of a proper coarsening has to be done in an auto
matic and adaptive way. Note that, even in cases of only "one-sided" anisotropies,
the recursive coarsening process will not be as straightforward as in the first approach
because the coarser grids are no longer uniform. For instance, in the case of (5) and
£ ~ 1, the first coarser grid has the mesh sizes h and 2h in the x- and y-direction,
respectively. The symmetric discretization of£ U:z::x: + Uyy on this grid is given by

Relaxing the CGC equation py pointwise Gauss-Seidel means, in terms of the error,

H 1 (H H H H)
vij == 2(1 + 4£) 4£vi-1,j + 4£vi+l,j + vi,j-1 + vi,j+1 •

Note that, compared to (6), the anisotropy has decreased. Thus, in constructing the
next coarser grid, one has to distinguish two cases: If 4£ ~ 1 we have to continue by
y-coarsening, but if 4£ ~ 1 one should continue by standard coarsening.

In Table 2, we summarize some concrete results for different strategies to solve
(5) with various ranges of£. Here, we only consider standard coarsening. Concerning
point relaxation, the order of points is assumed to be red-black. Correspondingly, in
line-relaxation, the lines are scanned "zebra-wise", i.e., one first relaxes every other
line, and afterwards the remaining ones. Grid transfers are assumed to be as in the
previous section, i.e., linear interpolation for corrections and full weighting for residual
transfers.

We note that, as before, J.Lv and, in particular, Pv very precisely predict the con
vergence of corresponding complete multigrid cycles. The results clearly show that
the use of point relaxation is limited to values of c which are not too different from
1 (not much larger than 2 or much smaller than 0.5, say). On the other hand, y-line
relaxation is mainly suitable for £ :::; 1, while alternating line relaxation gives an effi
cient method for any value of £. All results directly carry over to variable coefficient
problems by looking at the worst frozen coefficient cases.

26

problem: cU:z::z: + Uyy = j(X, y)
relaxation ll c f.Lv Pv c /Lv Pv

point 3 0.5 0.088 0.088 2 0.088 0.088
y-line 2 0.053 0.028 0.198 0.198

alt-line 2 0.020 0.013 0.020 0.013
point 3 0.1 0.564 0.564 10 0.564 0.564
y-Iine 2 0.053 0.047 0.683 0.683

alt-line 2 0.041 0.038 0.041 0.038
point 3 0.01 0.942 0.942 100 0.942 0.942
y-line 2 0.053 0.052 0.961 0.961

alt-line 2 0.051 0.051 0.051 0.051

Table 2: Results obtained by Fourier analysis

(b) The 3D - case:
The 3D-case is considerably more involved than the 2D-case. We do not want to

discuss all possible 3D-approaches, but rather point out some important differences to
the 2D-situation. For a detailed investigation we refer to [52] which gives a complete
survey on the various 3D-strategies.

We have stated above that, in 2D-problems, one can always use standard coars
ening, if it is combined with alternating line relaxation for smoothing. This may

, make one believe that one obtains a similarly "robust" multigrid method in 3D by a
straightforward generalization, namely, by using line relaxation now alternating with
respect to all 3 coordinate directions. This is, however, by no means true! To outline
some aspects, let us consider the 3D-model equation

auza: + buyy + CUzz = f(x,y,z), (7)

with at least one coefficient being significantly different from the others (otherwise
we can use point relaxation for smoothing). The general rule which carries over from
the 2D-case is that we obtain good smoothing of errors in all coordinate directions if
we relax all strongly coupled unknowns simultaneously. For instance, if a ~ b ~ c,
we may safely use z-line relaxation. Consequently, (triple) alternating line relaxation
will provide a perfect smoother independent of which coefficient is large as long as
the remaining two are approximately the same.

If, however, a ~ b ~ c, the situation is different as (according to the above rule)
we now have to use (y, z)-plane relaxation. In contrast to line relaxation (which leads
to simple tri-diagonal systems of equations), such a relaxation cannot be efficiently
performed by standard solvers for banded matrices. In fact, the only way to perform
such a relaxation efficiently is by using a (2D-) multigrid method for each plane.
(Some recommendations on how to proceed are contained in [52).) An alternative to
the use of plane relaxation is, similar to the 2D-case, to use point relaxation instead
but combined with (y, z)-semi coarsening (i.e., doubling the mesh sizes with respect
to y and z only).

27

Finally, if a <t: b <t: c, the situation is similar. As before, proper smoothing is
guaranteed by (y,z)-plane relaxation combined with standard coarsening. However,
if (y, z)-plane relaxation is performed by multigrid, one has to observe that there
is an anisotropy in each plane which implies that one should use z-line relaxation
for smoothing inside the plane-multigrid method. For the same reason, it can easily
be seen that (y,z)-semi coarsening is possible but has to be combined with z-line
relaxation rather than point relaxation.

In Table 3, we summarize appropriate strategies to solve (7) for some extreme
constant coefficient cases. As before, these results are of direct significance for general
variable coefficient problems. Again, the two-grid convergence factors shown, will also
be obtained by complete multigrid cycles. We want to explicitly point out, however,
that in order to judge which strategy is really the most efficient, it is not sufficient
to merely look at convergence (see, e.g., the very last method in the table, wh~ch
converges extremely fast), but one has to take the numerical work per cycle into
account. We are not going to discuss this any further here.

Summarizing, we see that the development of a 3D-multigrid algorithm needs a
careful investigation of the problem at hand. A smoothing process which, in con
nection with standard coarsening, certainly takes care of all possible anisotropies in
variable coefficient cases is alternating plane relaxation. If, however, one allows for
some restriction on the size of the coefficients (e.g., that one particular coefficient is
always the smallest one) one should seriously consider using semi-coarsening, this way
avoiding plane-relaxation.

We will come back to the anisotropic 3D case in some detail in Section 5.3.

problem: a Uzz + b Uyy + c Uzz == f(x, y, z)

a b c relaxation coarsening v Pv

1 1 1 point standard 210.198
1 1 100 z-line standard 2 0.074

point z-sem1 2 0.017
1 100 100 (y, z)-plane standard 2 0.052

point (y, z)-semi 2 0.074
1 100 10000 (y, z)-plane standard 2 0.052

z-line (y, z)-semi 2 0.052

point z-sem1 2 0.009

Table 3: Results obtained by Fourier analysis

4.2 First Order Differential Terms

Additional first order derivatives in (4) do not introduce any new problem if their
coefficients are "small enough". That is, using symmetric differences, the discrete
equations can be solved efficiently with the same techniques as explained in the pre-

28

vious two sections. In particular, the choice of a proper relaxation technique for
smoothing has to be oriented only to the principle part of the differential equation.

However, the situation changes if such lower order terms become dominant on a
grid with meshsize h. As an example, consider the linear convection-diffusion equation

e: .6.u + aux + buy= f(x,y).

As long as e: ~ ~ max(!ai, lbl), central differencing leads to diagonally dominant dif
ference schemes~- a property, which assures numerical stability. If this condition is
(considerably) violated, the difference scheme becomes unstable: The discrete solution
may become highly oscillating and will have nothing to do with the differential solu
tion. The most common remedy for numerical instabilities is the use of either some
kind of artificial viscosity (i.e., enlarging c depending on h) or one-sided (upstream)
differencing for the first order derivatives.

In the n1ultigrid context, however, it is not enough to have a stable difference
scheme for the fine-grid mesh size h only, because on coarser grids with much larger
mesh sizes the same scheme (e.g., central differencing) may still become unstable even
for first order terms of moderate size. Even if this happens on only a few of the grids
used in the multigrid cycle, the overall multigrid convergence may be totally spoiled.
The multigrid iteration may even diverge.

Note that the straightforward recursive definition of a fixed multigrid cycle, in
particular, the V-cycle, requires implicitly that all "intermediate" two-grid methods
exhibit similar convergence properties. In particular, the smoothing effects of the re
laxation should be similar on all grids. In terms of error components, a loss of numer
ical stability on any grid would mean that there are some high frequency components
showing no or at least only small residuals. Relaxations which usually compute the
error changes only in dependence upon the (local) residuals, will not affect these high
frequency components essentially and, consequently, they will loose their smoothing
properties. Thus, in designing a multigrid algorithm, one has to assure that all the
difference operators used on the various grids are actually stable discretizations (may
be of lower order) of the same differential operator.

The problem of deciding whether a given difference scheme for complex problems
is sufficiently stable, generally needs some quantitative insight into what stability re
ally means. Such a quantification of stability is given by the so-called h-ellipticity
measures introduced by A. Brandt (in terms of Fourier components). These are easy
to-compute measures for the stability of difference schemes for a fixed meshsize h
and actually quite useful in developing and analyzing discretizations even for com
plex problems. In this framework, also the strong interdependency of stability and
smoothing already mentioned above can be stated more precisely. Brandt points out,
that discrete ellipticity (i.e. h-ellipticity measures sufficiently bounded away from
zero) is, generally, a necessary and sufficient condition for the existence of smoothing
relaxations. The interested reader is referred to [6].

29

5 Standard Parallel Multigrid

5.1 Some General Ren1arks

In this chapter we will consider the parallelization of standard M G methods. On each
grid level we perform each of the basic grid operations (the MG components: relax
ation, computation of defects, interpolation, and restriction) using as much parallelism
as possible. It has long been known that certain relaxation methods are parallel in a
natural way, namely

- Jacobi-type relaxations
and
- Gauss-Seidel-type relaxations with multi-color (red-black, four color etc.) order

ing of the grid points.
Clearly, computation of defects, interpolation and restriction can be also performed

in parallel.
The first systematical papers on parallel MG were those of Grosch [20, 21] and

Brandt [7]. In [7] most of the essential phenomena with parallel M G are already
discussed or at least mentioned. In particular, it is stated that the time complexity
T*(N) 1 of a suitable standard parallel full multigrid (FMG) solver for the 2D-Poisson
model equation is T*(N) = 0 (log2N) 2

, where N = number of grid points.
We will consider three cases: Poisson's equation, Stokes equations and the aniso

tropic 3D operator. Each of these cases represents an essentially larger class of equa
tions (Poisson-like, Stokes-like, etc.) to which the considerations of this chapter carry
over immediately. Parallelization is obvious and straightforward for the Poisson and
Stokes cases (Section 5.2). Parallel smoothing for the anisotropic case (Section 5.3)
has to be adapted to the problem parameters as in the sequential case (Section 4.1).
Common grid transfer operators such as bilinear {in 2D) or trilinear (in 3D) interpo
lation, full weighting, half weighting, and injection are parallel by nature. Thus our
n1ain en1phasis in this chapter will be the parallelization of smoothing schemes.

5.2 Isotropic Equations and Systems

1. We consider a parallel MG-solver for the 3D-Poisson equation on the unit cube
(0, 1)3 with periodic boundary conditions. A V-cycle of this algorithm is char
acterized by the following components.

Discrete operator: ordinary second order 7-point approximation Llh on a reg
ular cubic grid with meshsize h and N = h-3 unknowns.

Relaxation: 3D-red-black pointwise, all red (black) grid points are si
multaneoulsy treated in the· first (second) relaxation half
step; v1 = 1 = v2 relaxation steps.

Coarsening: standard coarsening: h --+ 2h
ordinary 7 -point operator ~2h on the coarse grid.

1The time complexity T"' (N) measures the sequential (= non-parallel) arithmetic overhead of
an algorithm. It may be defined as the number of parallel arithmetic operations which have to be
executed sequentially, i.e. one after the other.

30

Grid transfers:

Cycle type:

h ~ 2h: 3D full-weighting;
2h ~ h: trilinear interpolation.
V-cycle, correction scheme

The time complexity for a V-cycle of this algorithm is T*(N) = O(log2N).

2. As a simple example of a system of elliptic equations, we consider the 2D-Stokes
equations

2 8p
-Vu+-

8x
2 8p

-\7 v+-
8y

8u 8v
-+-
8x 8y

=

defined on n = (0, 1)2 with boundary conditions

u

v

on an. In order to guarantee a unique solution the usual compatibility condition
is additionally required.

The Stokes equations are discretized in the usual way on a staggered quadratic
grid (meshsize h): p is defined at cell centers, whereas u and v are defined at
the centers of the cell faces.

A V-cycle of a parallel MG-solver for this discrete problem is characterized by
the following components:

Relaxation:

Coarsening:

Grid transfers:

Cycle type:

One relaxation step consists of two parts: Firstly, the mo
mentum equations are relaxed for u and v simultaneously
using fixed values of p. Then a so-called distributive relax
ation sweep [6] is performed which updates the unknowns
u, v and pin order to fulfill the continuity equation. Both
parts of the relaxation are performed using a red-black or
dering. Altogether, v1 = 1, v2 = 2 of these relaxation steps
are carried out on each level.
standard coarsening h __,. 2h on staggered grids (the
coarse grid is not a subset of the fine grid);
ordinary 7-point operator 6. 2h used on coarse grid.
h ~ 2h: 2D half-weighting on staggered grids
2h ~ h: bilinear interpolation
V-cycle, correction scheme

The time complexity of this algorithm (V-cycle) is also T*(N) = O(log2N).

In the two algorithms above only pointwise relaxation is needed for smoothing, since
the corresponding equations are isotropic. For the anisotropic case in the following
section, we would need parallel versions of line and plane-relaxations. This means
that things become somewhat more complicated.

31

5.3 Parallel Multigrid for Anisotropic Operators
In this section (abstracted from (53]) we describe parallel MG algorithms for the
anisotropic 3D model operator

Lu = aUzz + buyy + CUzz (8)

of Section 4.1.
This operator can be regarded as representative of a large class of elliptic 3D

problems. With respect to its anisotropy, it reflects certain general phenomena and
typical 3D difficulties. On the other hand, the operator is simple enough to allow
systematic investigations.

We consider only standard MG algorithms which have proven to be highly efficient
for sequential treatment. We show that these algorithms are also highly parallel in a
natural way. This is clear for the isotropic case

O<a=b=c

which has been c<?nsidered in Section 5.2. The red-black relaxation is known to give
very good smoothing and to be highly parallel. On the other hand, as long as standard
coarsening is maintained, in the cases

0 < a, b <t: c (a, b same magnitude)
and

' 0 <a~ b,c (b, c arbitrary),

the need for line-relaxation and plane-relaxation respectively for good smoothing, was
mentioned in Section 4.2. (We consider here only standard coarsening; see, however,
the remark at the end of this section.)

We consider the elliptic equation

with periodic boundary conditions

in the unit cube 0 = (0, 1)3
, where Lis the model operator (8) with constant coeffi

cients a, b, c > 0. We assume that the problem is discretized on an fl-matching grid
nh of mesh size

h=l.
n (n = 21

; l = 0, 1, 2, ...)

by use of the ordinary 7-point approximation Lh of order h 2
•

In the sequel, we describe parallel MG algorithms for this discrete problem. For
this purpose, it is useful to distinguish the four cases

(3D-I):
(3D-2) :
(3D-3) :
(3D-4) :

a 1"..1 b c
a 1"..1 b <t: c
a <t: br-v c
a ~ b ~ c

In addition to the 3D case, we also consider the corresponding 2D operator auzz +
buyy

32

(2D-1):
(2D-2) :

a, b
a ~ b

as well as the 1D case (operator au:r::n discretized by second order central differences).
In particular, the 2D cases and the 1D case occur in an auxiliary way in connection
with the 3D algorithms described below (parallel solution of 2D and 1D problems in
the plane- and line-relaxation, respectively).

Using the terminology of [50], we describe for each of the cases one step of a parallel
standard l\1G iteration, listing the corresponding 1\IIG components.

(1 D): The corresponding tridiagonal linear system is solved by 1D-cyclic reduc
tion. This is a well-known parallel linear solver. (It can ~e regarded as a
parallel 1D-MG method, namely a V-cycle degenerating to a direct linear
solver. Its components are v1 = 0, v2 = 1 relaxation steps, only fine grid
points not belonging to the coarse grid are treated in the relaxation step,
standard coarsening h :------+ 2h, L 2h is the ordinary 3-point operator, 1D full
weighting, interpolation only to those fine grid points which belong also to
the coarse grid.)

(2D-1) 2D-Poisson-like equation:

Relaxation: 2D-red-black pointwise;
v1 = 1, v2 = 0 relaxation steps;
all red (black) grid points are simultaneously
treated in the first (second) relaxation half step.

Coarsening: standard coarsening h ---+ 2h;
L2h is the ordinary 5-point operator.

Grid-transfers: h ---+ 2h: 2D full weighting;
2h ---+ h: bilinear interpolation;
all grid transfer operations are sirnultaneously per
formed for the respective grid points.

Cycle-type: V-cycle (or F,W-cycle);
correction scheme.

(2D-2) 2D-anisotropic equation:

Relaxation: y-linewise in a red-black-zebra order of lines;
v1 = 1, v2 = 0 rela.xation steps;
all red (black) zebra lines are simultaneously
treated in the first (second) relaxation half step;
for each line, the parallel1D-cyclic reduction algo
rithm is applied.

All other components are chosen as in the (2D-1) case.

(3D-I) 3D-Poisson-like equation:

Relaxation: 3D-red-black pointwise;
v1 = 1, v2 = 1 relaxation steps;
all red (black) grid points are simultaneously
treated in the first (second) relaxation half step.

33

Coarsening: standard coarsening h ----+ 2h;
L2h is the ordinary 7 -point operator.

Grid-transfers: h ----+ 2h: 3D full weighting;
2h --+ h: trilinear interpolation;
all grid transfer operations are simultaneously per
formed for the respective grid points.

Cycle-type: V-cycle (or F,W-cycle);
correction scheme.

(3D-2) 3D anisotropic equation, one dominant direction:

Relaxation: z-linewise in a 2D-red-black order of lines;
v1 = v2 = 1 relaxation steps;
all red (black) lines are simultaneously treated in
the first (second) relaxation half step;
for each line, the parallel1D-cyclic reduction algo
rithm is applied.

All other components are chosen as in the (3D-1) case.

(3D-3) 3D anisotropic equation, two dominant directions:
Relaxation: (y,z)-plane relaxation in a red-black-zebra order of

planes;
v1 = v2 = 1 relaxation steps;
all red (black) planes are treated simultaneously in
the first (second) relaxation half step;
for each plane, one V-cycle of the parallel (2D-1)
MG algorithm is applied.

All other components are chosen as in the (3D-1) case.

(3D-4) 3D anisotropic equation, each coefficient of different size:
Relaxation: (y,z)-plane relaxation in a red-black-zebra order of

planes;
v1 = v 2 = 1 relaxation steps;
all red (black) planes are treated simultaneously in
the first (second) relaxation half step;
for each plane, one V-cycle of the parallel (2D-2)
MG-algorithm (with z-line relaxation!) is applied.

All other components are chosen as in the (3D-1)-case.

Result 5.1 Table 4 contains the time complexity T(N) for one (V-, F-, W-) cycle of
each of the algorithms described above.

As a simplifying measure of the time complexity, we use "dimensional-weighted
stencil units". This means that we count:

3 for the parallel application of a 3D stencil to a 3D grid function (or for the
parallel calculation of a 3D defect);

34

2 for the parallel application of a 2D stencil to a 2D grid function (or for the
parallel calculation of a 2D defect);

1 for the parallel application of a 1D stencil to a 1D grid function.

V-Cycle F-Cycle W-Cycle p*

(3D-1) l5l +3 ~l2 + 21[+3
2 2 18n -15 0.2

(3D-2) 2[2 + l9l +3 ~[3 +
3 21 [2 + nz +3

2 6 O(n) 0.07

(3D-3) 12J2 + 351 +3 4[3 + 47l2 + 45[+3
2 2 O(n) 0.05

(3D-4) i[3
3 +18P + 119l

3 +3 l[4
3 + 230 [3 + :. ~5l2 + 1!51 +3 O(n) 0.05

{2D-1) 6l +2 3l2 + 51 +2 8n- 6 0.25

(2D-2) P+ 8l +2 l[3 +
3

~l2 + 37l +2
2 6 O(n) 0.125

{1D-1) 2l +1 - - 0.

Table 4: Time complexity T(N) and convergence factors p*

Here we have used the notations

N = nd = 2dl (d == dimension of the problem, l == number of levels,
n == number of grid intervals in each coordinate direction.)

p* = supp(Mlh) (cf.[50]).

From Table 4 we recognize that the time complexity T(N) is polynomial in l ==
O(log N) for V- and F-cycles (and linear inn for W-cycles). The polynomial degree
depends on the anisotropy of the operator considered. This is due to the fact that we
use auxiliarily 2D-MG cycles or lD-cyclic reductions (with time complexity of order
2: O(log N)) in the plane- and the line-relaxations, respectively. In the sequential case,
such auxiliary lower dimensional MG cycles do not change the asymptotic optimality
of the 3D-MG algorithms.

In Section 4.2 we have mentioned also certain semi-coarsening strategies in con
nection with point relaxation for the cases (3D-2), (3D-3), (3D-4), and which lead to
efficient 3D-MG methods. The grid structure of these algorithms is somewhat more
complicated than the grid structure of standard coarsening algorithms. However, one
can avoid the increase of the degree of l in T(N) by using semi-coarsening strategies.

On the other hand, with respect to the practical implementation of parallel 3D
MG algorithms on real MIMD systems, the polynomial increase of T(N) in log N does
not seem to be significant (see also Section 6.2).

Finally, we remark that the time complexity measures of all parallel algorithms
above have to be multiplied by a factor of O(log N) if we consider full multigrid
versions instead of single cycles.

35

6 Grid Partitioning, General Grid Structures,
Implementation Aspects

6.1 Grid Partitioning for Regular Grids

In the previous chapter, we have considered standard highly parallel MG algorithms
implemented on hypothetical systems which have as many processors as desired. How
ever, when they are implemented on real vector or parallel computers, it is not usually
possible to fully exploit their inherent parallelism.

For example the pipelined processors in vector computers allow only a low degree
of parallelism to be achieved. Even highly parallel multiprocessor computers always
have a certain limited number of simultaneously working processing elements (say
P). Nevertheless, the high degree of parallelism in the algorithms is useful or even
necessary for several reasons. Firstly, it is preferable to construct algorithms which can
be used on any parallel machine independently of P. Secondly, the full performance
of vector units can usually be achieved only by using long vectors, and so require
an algorithm with a high degree of parallelism. Finally, the recently designed high
performance MIMD multiprocessors (such as SUPRENUM) combine the - global -
MIMD structure with - local - SIMD pipeline processing (e.g. by vector floating
point units) in each node. For such MIMD /SIMD systems, the MIMD and the SIMD
degrees of parallelism are effectively multiplied provided that both are supported by
the implemented algorithm.

We would like to emphasize that the communication problem in MIMD multipro
cessors with distributed memory has essential algorithmical implications. Since for
such systems one has to make a decision about the interconnection structure of the
nodes, this structure defines a "neighborhood" and by that, a topology of the nodes
in a natural way. In the design of the algorithms this topology has to be taken into
account. In addition to the parallelism that has to be provided by the algorithms,
a second important property, "locality" of the algorithms with respect to the given
topology, is required. This means that the amount of data which has to be commu
nicated, the number of communication packages, and the distances which have to be
spanned in the architecture become of essential significance.

If grid applications are to be implemented on MIMD multiprocessor computers, a
straightforward approach is to use grid partitioning. For all methods, whether single
grid or M G, this means that the original domain is split into P parts (sub domains) in
such a way that, with respect to the finest grid, each subdomain consists of (roughly)
the same number of grid points (see Figure 4). Each subdomain is then assigned to
one of the P processes of the parallel program. The partitioning generates certain
artificial boundaries within the original domain.

If we consider a typical component of a parallel grid algorithm, e.g. a parallel
relaxation step, we see that on each subdomain this relaxation step can be carried
out independently, provided all necessary data are available. Because there are only
local interdependencies of the grid points, each process needs foreign data only fron1
boundary areas of neighboring subdomains. After the step is perforn1ed, again data
have to be communicated (exchanged) across the artificial boundaries (see Figure 5).

The extension of the single grid case to parallel MG is obvious: On the finest grid

36

Figure 4: 2D-grid partitioned into 16 logically rectangular subdomains.

level, all communication is strictly local. Similarly, on the coarser grids necessary
communication is "local" relatively to the corresponding grid level (i.e. neighborhood
is defined with respect to the grid level).

One should distinguish the grid partitioning approach as sketched above from the
domain decomposition or substructuring methods which are often considered in con
nection with finite element or finite difference discretizations on parallel computers.
The decomposition and substructuring methods lead to algorithms which are numer
ically different from the undecomposed or sequential version. In contrast to that,
parallel algorithms based on grid partitioning are algorithmically equivalent to their
non-partitioned versions (running on sequential computers) in many cases.

0 0 0 0

0 • • 0

0 • • 0
~-

0 0 o,o
0 0 o 1 o

I
0 • .,o
0 • •'o

I
0 0 o,o
0 0 0~<:
0 • • 0

0 • • 0

0 0 0 0

~0 0-0 0-0 0~
ICJ
I
ICJ
ICJ
I ,o

0

0

0

0

0

•
•
0

0 0 CJ'
I

• 0 CJ

• 9 [t!JI
0 0'0t

~q~_q~-q~~

0 0 0 0

0 • • 0

0 • • 0 ------0 0 0 0

0 0 0 0

0 • • 0

0 • • 0

0 0 0 0

0 0 0 0 -·-----
0 • • 0

0 • • 0

0 0 0 0

0 0 0 0

0 • • 0

0 • • 0 - ~ o,o 0 0

o 1o 0 0
I

o,. • 0

o'• • 0
I

o,o 0 0

.? ~ 0 0 0

0 • • 0

0 • • 0

0 0 0 0

~0 0-0 0-0 0~
ICJ 0 0 I
0 0 •

'if •
,o 0 0

0 0

• 0

• 0

0 0

CJI
I o,

CJI
I o,

~q~-q~_q_:J~

Figure 5: Overlap areas and their exchange.

37

6.2 Grid Partitioning for the Anisotropic 3D Operator
As a very simple example of the grid partitioning approach, we consider here a prob
lem in the unit cube, namely the anisotropic 3D problem as discussed in Section 5.3.
Since the corresponding algorithms may become quite complicated (with the recur
sive structure of plane and line-relaxation), we confine ourselves to the discussion of
algorithmic aspects which arise when these algorithms are implemented on MIMD
computers. The communication aspects are not explicitly discussed here as we are
mainly interested in results which are hardware independent and optimal in the sense
that communication overhead is neglected. (This material is abstracted from [53].)

The communication overhead has been investigated very systematically in many
papers of Mierendorff and Kolp (for simpler MG test algorithms). They have consid
ered all standard topologies (such as arrays, trees, hypercubes, etc.), but also more
sophisticated ones like the SUPRENUM topology (see for exainple [30]). A somewhat
simplified SUPRENUM-like topology will be studied in chapter 7.

Clearly, there are many reasonable ways to partition the given grid (domain) into
subgrids (sub domains) and to map them onto the multiprocessor architecture.

For simplicity, we consider here only the most straightforward partitioning and
mapping.

We first assume that there are P = pd = 2dq parallel working processor nodes
available in the architecture (d: dimension of the problem). We consider the discrete
3D problem described in section 5.3 with N = nd = 2dl grid points (n: number of
grid points in each coordinate direction). Each of the 3 coordinates of the unit cube
is now divided into 2q equidistant intervals so that n consists of 2dq subcubes nijk
(i,j, k = 1, ... , 2q).

Distinguishing the cases (3D-1), (3D-2), (3D-3), (3D-4), we then apply the respec
tive 3D-MG algorithms. Using grid partitioning, these algorithms are decomposed
and applied to the sub grids in a natural way. Communication (exchange of data) is
required only along the "interior" boundaries of the subcubes niik· The degree of par
allelism of these decomposed algorithms is determined by P, the number of processing
nodes. We assume that the problem size is essentially larger than the "system size",
i.e. that N > P.

Result 6.1 Under the above assumptions, the time complexity T(1V, P) for the de
composed 3D-MG algorithms (3D-1}, (3D-2}, {3D-3}, (3D-4) is given by Table 5.
Additional results refer to the corresponding 2D-cases.

The T(N, P) expressions are valid for arbitrary Nand Pas long as l > q. However,
in practice one will usually regard P as fixed and N as variable (N ---t oo).

The leading terms which have the form const * N/ P clearly coincide for P = 1
with the leading terms of the complexity for the corresponding sequential algorithms.

We have not explicitly specified the minor terms 0(...) here since they are very
lengthy. In order to give an impression of the size of the above expressions and, in
particular, of the relation between leading and minor terms, we consider a concrete
example in Table 6.

38

V-Cycle F-Cycle W-Cycle

(3D-1) 60!:!.. + 105q-39
7 p 7 ~90 ~ + 0(q2' lq) 10~ + 18n- 25!!. p p

(3D-2) 776 '¥ + 0(q2' q;:) 6084~ + O(q3 q2l qn2)
49 p ' ' p2

38 ~ + 0(n q n2)
3 p ' p2

(3D-3) 1~4 '¥ + 0(q2' q;) 9:92 ~ + 0(q3' q2l, qr;) 62~+ O(n q2!!. ql!!.)
3 P ' P' P

(3D-4) 436N + O(q3 qn~ q2!!.)
21 p ' PM ' p

3488!:!_ + O(q4 q3l q2!!. qn2)
147 p ' ' p' p2

218 ~ + O(n q3!!. q2f!!. qn2)
9 P ' ' P' P' P

(2D-1) 4'f; + 6q- 2 136 r; + 0(q2' ql) 6~ + 8n- 12!! p p

(2D-2) 136!} + O(q2,q;) 694 r; + 0 (q3' q2l' q;) 8~ + O(n ql!l q2!!.)
p ' P' p

Table 5: Time complexity T(N, P), neglecting communication overhead

Here, we compare the exact T(N, P) values (bold numbers) with T(N, 1)/ P where
T(N, 1) gives the sequential time complexity. The ratios

E(N P)- T(N,1)/P - T(N,1)
' - T(N,P) - P*T(N,P)

are the efficiency values of the decomposed algorithms (neglecting communication!).
See also section 7 .1.

V-Cycle F-Cycle W-Cycle

T(N,P) T(N,1)/P E(N,P) T(N,P) T(N,1)/P E(N,P) T(N,P) T(N,1)/P E(N,P)

. (3D-1)

(3D-2)

(3D-3)

(3D-4)

(2D-1)

(2D-2)

35148 35108 .999 40374 40123
49298 44556 .904 57506 50937
73716 72555 .984 85750 82919

95800 85206 .889 113086 97406

16406 16383 .999 22042 21845

23024 21853 .949 31668 29143

Table 6: Evaluated time complexities T(N ,P) for
P == 512 N == 221 ~ 2 million
P == 256 N == 220 ~ 1 million

.994 42864

.886 61392

.967 93552

.861 124208

.991 32000

.920 47808

in the (3D) case
in the (2D) case

40958

52007

84639

99444

24560

32784

From the values in Table 6 we recognize that the efficiency is high or at least
satisfactory in all cases. The influence of the very coarse grids is not an essential
problem, even in the cases ofF- and W-cycles. This is true even though we have used
a very simple and general partitioning rather than partitionings that are optimized
for the specific cases. Nevertheless, there are many interesting observations that can
be made in connection with Table 5 and Table 6. We will conclude with one such
observation.

We recognize that in those V-cycle cases where line-relaxation is used the efficiency
of the respective 3D-algorithms is essentially worse than in the cases of point- or "pure"

39

.965

.847

.905

.801

.768

.686

plane-relaxation. The reason for this is the influence of the very coarse grids and the
partitioning we have used. Compare, for example, the cases (3D-2) and (3D-3). For
(3D-2), in each relaxation step n 2 lD-problems have to be solved and therefore O(n2

)

"very coarse grid visits" have to be made. On the other hand, in each plane-relaxation
step in (3D-3), "only" n 2D-problems are treated and therefore O(n) very coarse grid
visits are necessary.

6.3 More General Grid Structures

Although the typical applications in scientific supercomputing belong to a wide range
of different scientific and technological fields, many of them are characterized by re
markably similar mathematical models and, as a consequence of that, by very similar
data structures. Grids and grid-like data str~ctures are encountered most frequently.
(The material here is abstracted from: [49].)

Apart from the very simple grid structures considered so far, there· are several
more involved structures encountered in various applications. We here distinguish
three types of grids:

• Regular grids
Regular grids normally arise from discretization of PDEs on simple domains,
i.e. domains which can be mapped to rectangles and cuboids by special trans
formations.

Regular grids are characterized by direct grid point addressing and a rectangular
(2D) resp. cuboid (3D) address space area. A geometric neighborhood of grid
points in this respect also means a logical neighborhood in the address space of
the data structure.

• Block structured grids
In many applications, in particular in CFD, it is either not practiced or not ap
propriate to transform the domain to only one rectangle (cuboid). The domain
must rather be partitioned into several parts ("blocks") each of which in turn
can be transformed to a rectangle or cuboid (see Figure 4 for such a transfor
mation and Figure 6(c) for a simple grid consisting of 2 blocks). This mapping
technique results in block structured grids, \vhich consist of several regular grids.
The relations within each block are of the same type as in the case of regular
grids. It can become difficult to maintain the locality at the block boundaries if
the block structure itself is not a regular one. A concept seems to be accepted for
CFD simulations where each single block shows a regular internal grid structure,
but the block structure itself is admitted to be irregular [36, 37].

• Irregular grids
If there is no fixed grid structure, we speak of irregular grids (no fixed number of
neighbor points, no regularity of subgrids). The grid points cannot be addressed
geometrically but must be addressed indirectly (using pointers). The typical
example for irregular grids in this respect are certain finite element nets (see
Figure 6(a)). Local relations, which are natural also on irregular grids, can no
longer be identified as local relations in the memory.

40

=t=
.........,

H-+
I

(a) (b) (c)

Figure 6: Irregular (a), locally refined (b), and block-structured (c) grid

In this paper, we will only consider grids the structure of which is statically defined,
i.e. the grid structure is already known a priori and will not be changed in the course
of the calculation. For such static grids the grid partitioning approach is very natural.

6.4 Implementation of Parallel Grid Algorithms

The general parallelization approach for grid applications on distributed memory
multiprocessor (dm-mp) architectures is the grid partitioning method as introduced
above. With respect to regular grids, we summarize its characteristics here once more:

• A set of equal size subgrids is created and each subgrid is itself regular.

• All subgrids are processed independently and in parallel during each MG step.

• The numerical algorithm is not changed, i.e. its sequential and its parallel
version give exactly the same results.

• After each computational step the boundaries of the subgrids have to be updated
using communication.

We now formulate some basic guidelines which should be considered if the grid
partitioning method (as well as any other parallelization method) is implemented on
a dm-mp system. (The material here is in part abstracted from [47].)

1. The implementation should be independent of the topology of the architecture.
The structure of a parallel grid program should look identical on hypercubes,
trees, or hierarchical architectures like SUPRENUM.

2. The implementation should also be independent of the number of processors. It
should be possible to run the same program on different numbers of nodes with
out recompilation- at least as long as the local memory capacity is sufficient.

3. For reasons of debugging, maintenance, and program aesthetics, a clear program
structure is highly recommended, separating the calculation and the communi
cation parts of the code.

4. Finally, the programmer should strive for portability within the class of dm-mp
systems. This requires, however, common (language or run-time) constructs
describing the parallelism and the communication.

41

Guideline 1 is satisfied if each subgrid is associated with a process (as described in
Section 2.3) instead of directly with a node. The system of processes has a user defined
topology. For the grid partitioning method a grid or torus is obviously an appropriate
process topology since it preserves locality, i.e. neighboring subgrids are associated
with neighboring processes. During global collection and distribution steps it may
be useful to configurate the processes additionally as a binary or as a spanning tree.
The mapping of the process structure to the actual hardware configuration should be
done automatically by the system software. Process grids are mapped to hypercubes
using gray-codes. On SUPRENUM a special mapping library performs optimized
process-node mappings for a number of standard process topologies including grids
and trees.

Typically, a parallel program for a regular grid application (single grid or multigrid)
on a dm-multiprocessor has the following structure:

• The host process creates the set of processes and sends them the necessary
control data (identification of their "neighbors", index range of the subdomain,
certain global parameters of the algorithm).

• The host process sends each process the initial data belonging to its part of the
domain.

• The node processes receive the initial information.

• The computation part in the node processes is separated from the communica
tion part and is very similar to a sequential grid program.

• After each computational step the points near the interior boundaries (which
are stored in overlap areas) are updated by mutual exchange of data.

• During the computation certain globally dependent results (such as norms of
residuals) are assembled treewise.

• After the computation, the results are sent to the host process, where the solu
tion for the entire domain is assembled, or are written directly to an external
file system.

Nearly all existing dm-mp systems (Intel iPSC, SUPRENUM etc.) provide a more or
less convenient process model. The grid partitioning method for regular grids requires
only the static features of the process model, i.e. all processes are created and started
at the beginning of the application. Programming of adaptive (i.e. solution dependent)
grid structures may require, however, dynamic processes which can be created during
run-time. Dynamic process concepts are provided by some of the existing dm-mp
machines although the fundamental mapping problems are not solved yet. Some
work on the mapping problems has been done in the SUPRENUM project [31].

Guideline 2 requires that several processes can run on one node at the same time
(multi-processing). Although - due to the process switches - the performance will
decrease, this option is necessary in order to provide independence from the actual
underlying hardware configuration. In the future, dm-mp systems will not be single
user systems. They will be large supercomputers with the flexibility to allow the

42

user to have the whole machine (for production runs) or only a small part of it (for
development and debug purposes).

Multi-processing is not crucial for regular grids since the user can very easily adapt
the number of processes to the number of nodes actually available. In fact, this is
much more efficient than having a fixed large number of subgrids and processes and
relying on multi-processing. Advanced fault tolerance concepts, however, need the
multi-processing feature since they allow the continuation of an application even if a
total failure occurs on a node.

Message-passing is the basic communication system on dm-mp architectures. The
most convenient - but unfortunately also most expensive- communication protocol is
asynchronous message-passing. This means that the sending process sends its message
into the mailbox of the receiver and immediately continues execution without waiting
for completion of the message transfer. The receiving process looks for a message in
its mailbox and eventually waits until the desired message arrives. The asynchronous
message passing allows an arbitrary sequence of SEND and RECEIVE statements
and leads to a clear program structure (guideline 3).

A simpler protocol is synchronous message passing where the sender has to wait
until the destination process has received the message. This requires a special struc
ture of SEND and RECEIVE staten1ents in order to avoid deadlock situations. The
data exchange programmed in the node program in Section 6.5, for instance, will result
in a deadlock for synchronous message passing because all processes are sending at
the same time. (Of course, a simple rearrangement of the SENDs and RECEIVEs will
remove the deadlock). For grid partitioning on regular grids synchronous message
passing is completely sufficient, whereas block-structured grids can be programmed
more comfortably using asynchronous message passing. ·

In both concepts, the RECEIVE statement is blocking, i.e. the node program
execution is stopped until the specified. message has arrived in the mailbox. This
implicitely solves the synchronization problem since communicating processes syn
chronize themselves. In asynchronous systems it is possible to check the availability
of pending messages, prior to issueing a RECEIVE.

Portability (guideline 4) is a very important issue. Parallelism for the most rel
evant programming languages such as Fortran and C is not yet standardized. Some
of the dm-mp systems provide calls to the run-time library for process creation and
communication. Data have to be transfered via the procedure interface which re
quires additional copy steps. SUPRENUM has included most of those constructs
into Fortran. Here, the SEND and RECEIVE constructs are similar to ':VRITE and
READ and they support the Fortran-8X array notation. Transputer systems mainly
use the OCCAM language which already contains all necessary process handling and
communication constructs.

In view of this variety one approach towards portability is the use of special com
munications libraries which then have to be implemented on all systems. Such libraries
are clearly restricted to certain classes of applications and data structures. One effort
in this direction is the SUPRENU:NI communications library for grid applications (see
Section 6.6).

There are several other approaches to portability, a very promising one being
the definition, implen1entation and use of certain system independent communica-

43

tion macros. Such macros cover the whole area of process creation, communication,
synchronization etc. If parallel programs are written in terms of these macros, they
then run on every parallel machine on which the macros are available. Moreover, the
macros can be implernented on dm-mp systems as well as on shared memory machines.
In one s-uch concept [3], macros have been implemented on the following systems:

• Encore Multimax

• Sequent Balance

• Alliant FX/8

• Network of Sun workstations

• Intel iPSC /2 hypercube

• Network of IBM RT workstations

• SUPRENU~I

Figure 7 summarizes the different mapping stages which are involved in the map
ping of grid applications to dm-mp systerns. The first step is the user-supplied map
ping from the physical boundary fitted grid to a logical rectangular structure (by
grid generation programs), followed by mapping of the rectangular grid structure to
a process system (using the grid partitioning method). The final mapping step maps
the process system to the nodes.

boundary fitted
grid

grid generation
(use1 p1og1am)

rectangular
grid

grid partitioning
(comm. libra1y)

process sytem

process mapp1ng
(mapping lib1ary;

~~------h_a_r_d_w_a_r_e_n __ o_d_e_s ______ ~
Figure 7: Mapping steps

44

6.5 Example of a Parallel Grid Program (SUPRENUM)

The concrete program example given here consists of a simple host and node program
for a 2D relaxation (e.g. for the iterative solution of Poisson's equation). The process
creation and the message passing instructions are taken from SUPRENUM Fortran
[2].

The host program runs on a front-end system which can perforn1 user I/0 whereas
the node program is loaded into the nodes. For regular grid algorithms usually only
one node program has to be written which operates on the different subgrids. Thus
the operation mode is rather SIMD-like than MIMD-like for these applications. More
complex applications and/ or data structures require different node programs on the
different nodes.

The example programs listed below should be regarded as functional kernels but
not as a complete, safe, and efficient implementation of a grid algorithm. For instance,
the initial information sent to the node processes usually contains a lot more control
data (e.g. for the numerical algorithm). The collection of local solutions and local
residual norms as programmed here is neither safe nor efficient. For reasons of safety,
for instance, the node processes first should ask the host process whether it is ready
to accept the solution data. The local residual norms can be collected much more
efficiently via a process tree.

Host program:
C declarations

REAL, ARRAY (0:10000, 0:10000) :: U,F
TASKID, ARRAY, ALLOCATABLE(:,:) .. PID
TASKID SOUTH, NORTH, WEST, EAST
INTEGER, ARRAY, ALLOCATABLE(:,:,:) .. IX, IY

C initialize tags

INTEGER TIN, TST, TSO, TRE
DATA TIN/10/, TST/11/, TS0/12/, TRE/13/

C user input:
C maximal number of relaxations MAXIT
C ~recess configuration NPX x NPY, grid size NX x NY
C 1nitial solut1on U, right hand side F

READ(...) MAXIT, NPX, NPY, NX, NY, U, F
NP=NPX * NPY

C allocate dynamic arrays

ALLOCATE PID(NPX, NPY), IX(NPX, NPY, 2), IY(NPX, NPY, 2)
C compute size of subdomains

IPSX=NX/NPX
IPSY=NY/NPY
DO 10 IPX = 1, NPX

DO 10 IPY = 1, NPY
C create node processes

PID(IPX,IPY) = NEWTASK('PROG..NODE', (IPY-1)*NPX+IPX)
C store index boundaries of subgrids

IX(IPX,IPY,1) = (IPX-1) * IPSX + 1
IX(IPX,IPY ,2) = IPX * IPSX
IY(IPX,IPY ,1) = (IPY-1) * IPSY + 1
IY(IPX,IPY ,2) = IPY * IPSY

10 CONTINUE

45

C send initial information
DO 20 IPX = 1, NPX

DO 20 IPY = 1, NPY
SOUTH = .NOTASKID.
IF(IPY.NE.1) SOUTH=PID(IPX,IPY-1)
NORTH = .NOTASKID.
IF(IPY.NE.NPY) NORTH=PID(IPX,IPY+1)
WEST = .NOTASKID.
IF(IPX.NE.1) WEST=PID(IPX-1,IPY)
EAST = .NOTASKID.
IF(IPY.NE.NPX) EAST=PID(IPX+1,IPY)
SEND (TASKID=PID(IPX,IPY), TAG=TIN)

& MAXIT, IPX, IPY, IX(IPX, IPY, 1:2), IY(IPX, IPY, 1:2), & SOUTH, NORTH, WEST, EAST
20 CONTINUE
C send initial solution and right hand side

DO 30 IPX = 1, NPX
DO 30 IPY = 1, NPY

SEND (TASKID=PID(IPX,IPY), TAG=TST)
& U(IX(IPX,IPY,1):IX(IPX,IPY,2), IY(IPX,IPY,1):IY(IPX,IPY,2)), & F(IX(IPX,IPY,1):IX(IPX,IPY,2), IY(IPX,IPY,1):IY(IPX,IPY,2))

30 CONTINUE
C receive solution in arbitrary order

DO 40 IP=l,NP
RECEIVE (TAG=TSO) IPX, IPY,

& U(IX(IPX,IPY,1):IX(IPX,IPY,2), IY(IPX,IPY,1):IY(IPX,IPY,2)) 40 CONTINUE
C receive residual norms in arbitrary order

RES = O.DO
DO 50 IP=1,NP

RECEIVE (TAG=TRE) RESLOC
RES = MAX (RES, RESLOC)

50 CONTINUE
C postprocessing

C end of host program
DEALLOCATE PID, IX, IY
STOP
END

Node program:
C declarations

REAL,ARRAY,ALLOCATABLE(:,:) .. U,F
TASKID SOUTH, NORTH, WEST, EAST
INTEGER, ARRAY (2) :: IX, IY

C tags
INTEGER TIN, TST, TSO, TRE
DATA TIN/10/, TST/11/, TS0/12/, TRE/13/

C receive initial information
RECEIVE(TAG=TIN) MAXIT, IPX, IPY, IX, IY, SOUTH, NORTH, WEST, EAST

C allocate dynamic arrays
ALLOCATE U(IX(1)-1:IX(2)+1, IY(1)-1:IY(2)+1), F(IX(1):IX(2), IY(1):IY(2))

C receive initial solution and right hand side
RECEIVE(TAG=TST) U(IX(1):IX(2), IY(1):IY(2)), F(IX(1):IX(2), IY(1):IY(2))

C iterative loop
DO 10 IT= 1, MAXIT

C subroutine RELAX contains the usual sequential program

46

CALL RELAX(U, F, ...)

C data exchange by message passing:
C First send the current approximation at points which
C belong to the overlap of the western (eastern, southern,
C northern) neighbor process to this process.
C Then receive the current approximation at points which
C belong to the own overlap'. These values have been sent
C by the western, eastern, southern, and northern
C neighbors in their SEND statements.

TEX = 100 + IT
SEND(TASKID=WEST,TAG=TEX) U(IX(1),IY(1):IY(2))
SEND(TASKID=EAST,TAG=TEX) U(IX(2),IY(1):IY(2))
SEND(TASKID=SOUTH,TAG=TEX) U(IX(1):IX(2),IY(1))
SEND(TASKID=NORTH,TAG=TEX) U(IX(1):IX(2),IY(2))
RECEIVE(TASKID=WEST,TAG=TEX) U(IX(1)-1,IY(1):IY(2))
RECEIVE(TASKID=EAST,TAG=TEX) U(IX(2)+1,IY(1):IY(2))
RECEIVE(TASKID=SOUTH,TAG=TEX) U(IX(1):IX(2),IY(1)-1)
RECEIVE(TASKID=NORTH,TAG=TEX) U(IX(1):IX(2),IY(2)+1)

C end of loop

10 CONTINUE

C send local solution to host

SEND (TASKID=MASTER(), TAG=TSO) IPX, IPY, U(IX(1):IX(2), IY(1):IY(2))
C send local residual norms to host

CALL RESID(U, F, RES, ...)
SEND (TASKID=MASTER(), TAG=TRE) RES

C end of node program

DEALLOCATE U, F
STOP
END

6.6 Communications Libraries

In the future, parallelizers like SUPERB [55] will generate host and node programs
such as those given in Section 6.5 (semi)-automatically. Until then the development of
parallel programs can be simplified by certain library functions which provide typical
high-level communication patterns in a convenient way for the user. The SUPRENUM
communications library [25, 27, 28], for instance, contains subroutines for the creation
of a process system with a grid topology, for the sending of initial information, for the
boundary exchange, and for the final collection step. It is advantageous to use such a
library because it ensures

• clean and error-free programming,

• easy development of parallel codes,

• portability within the class of dm-mp systems (see guideline 4 in Section 6.4).
Programs can be ported to any dm-mp machine as soon as the communication
library has been implemented. As an example, programs are routinely ported
between the Intel iPSC and SUPRENUM.

A corresponding library for block-structured applications (6.3) is also available. Most
of the application software which has been written in the SUPRENUM project is
based on these routines.

47

7 Multiprocessor Efficiency of Multigrid

7.1 Basic Notations and Measures

The usual quantities of interest in evaluating the performance of parallel algorithms
are:

• Time T(N, P): time to solve a problem of size N on a multiprocessor system
using P nodes,

• mp-speed-up S(N, P) := T(N, 1) I T(N, P),

• mp-efficiency E(N, P) := S(N, P) I P.

Note that on MIMDISI:NID archi_tectures, such as dm-mp systems with vector nodes,
the utilization of the hardware resources is the product of the mp-efficiency defined
above and the efficiency related to the vector processing unit.

The sequential reference time T(N, 1) refers to the parallel program running on
one node. T(N, 1) may be a hypothetic time because for large values of N the memory
of one node might be too small.

Another very common definition of the speed-up is

S*(N, P) = T(N, 1, Aopt)
T(N, P, Apar)

which assumes that the best sequential algorithm available Aopt is compared to the
(possibly different) parallel algorithm Apar· S* depends on the efficiency of the parallel
implementation (nip-efficiency) as well as on the numerical efficiency of the algorithms.
Both types of efficiency are important but they should be clearly separated. In this
paper we are solely interested in the mp-efficiency as defined above. \Ve want to
compare, for example, parallel single grid methods to sequential single grid methods
and not to the much faster sequential MG methods.

The basic reasons for mp-efficiency being significantly smaller than 1 are

• not enough parallelism in the algorithm (i.e. the number of processes which can
execute in parallel is smaller than the number of nodes available),

• unbalanced load,

• communication (including synchronization 2).

The mp-efficiency can be expressed as

1
E(N,P)=-.

1+r

The quantity r is a measure for the "parallel overhead". It is used here because it
allows a clear separation of the different overhead sources (see Section 7 .2). The aim
of an implementation of parallel algorithms is, of course, the minimization of the total
overhead (not necessarily of each of its components). In order to quantify this goal,
we formulate the following conditions:

2Synchronization will be neglected in this chapter.

48

(A) E -+ 1 for N -+ oo and P fixed. For sufficiently large problems on a given
machine the efficiency should be close to 1. This condition gives no information
about the efficiency for realistic values of N or about the asymptotic behaviour
as NIP-+ oo.

(B) E ---+ 1 for Nl P ---+ oo. This is a stronger condition than (A) requu
ing that the efficiency depends only on the process size s == NIP. Condi
tion (B) ensures the scalability of the parallel application which means that
T(N, P) == T(2N, 2P), i.e. a twice as large problem can be solved in the same
time using twice as many nodes. This is important if the parallel algorithm runs
on massively parallel dm-mp systems with thousands of nodes.

(C) E ~ 0.5 for "realistic" process sizes s == NIP. For certain applications N is
given and condition (C) should determine a reasonable value for P. We can also
derive from this condition the minimum size of the node memory. If condition
(B) is fulfilled we can define s 1; 2 as the process size for which E==0.5. (This
definition is independent of the size of the machine.)

7.2 A System Model for a Ho1nogeneous Architecture
In the rest of the paper we always assume that each node of the dm-mp system
is associated to exactly one process, i.e. we do not distinguish between nodes and
processes. As mentioned in Section 6.4 this assumption is reasonable for regular
grids.

The basic parameters which describe the performance of a homogeneous dm-mp
system are ·

P number of processes (==nodes). The number of processes in each direction
of the process grid is assumed to be a power of 2

a: the start-up time for sending and receiving a message

f3 the transfer time per word of a message

8 the time for one floating point operation.

The start-up and transfer times are often given in nondimensionalized form a.' ==
a: I 8, {3' == f3 I 8. a:' is the number of flops that can be performed during one message
start-up, {3' is number of flops during the transfer of one word. For our simulation,
8 is assumed to be constant. On vector nodes it depends, of course, heavily on the
vector length.

The total time for a parallel program which is based on message-passing consists
of a calculation component Tcomp and a communication component Tcomm·

Communicating a message of length L items costs a.' + (3' L time units (==flops).
So Tcomm is a combination of the start-up time T~t (depending on a.') and the transfer
time Ttr (depending on f3'). Ttr is an expression for the lumped transfer times turning
up in different system components.

For existing dm-mp systems with vector nodes (SUPRENUM, iPSC-VX, iPSC 1860)
the communication parameters a:' and j3' lie in the range of 1000-10000 and 10-100,
respectively. For dm-mp systems with less powerful scalar arithmetic co-processors
these values are much smaller.

49

If calculation and communication cannot be overlapped at all, the total time is

(9)

On many dm-mp systems special communication hardware is available and the trans
fer of the data to the communication channel or bus may be done in parallel to the
computational work. If perfect overlap of communication and calculation can be
achieved the total time reduces to

(10)

We expect the real time to lie somewhere between the worst case (9) and best case
(10) estimates- depending on the actual hardware and the particular application. In
the subsequent simulations we always use the worst case estimate (9).

The total parallel overhead r is the sum of its components

PTcomp(N, P)
Tcomp == Tcomp(N, 1) ~ 1,

PTst(N, P)
r st == ' Tcomp(N, 1)

PTtr(N, P)
Ttr == •

Tcomp(N, 1)

T == Tcomp + Tst + Ttr· (11)

The simple linear one-stage communication model is strictly valid only for homoge
neous parallel systems on which logical process neighbors can be mapped to physical
neighbors (as e.g. on hypercubes) or on which the distance of communication is
unimportant. On systems with hierarchical architectures (like SUPRENUM) only
the communication on one level is represented in the model. So the simulations for
SUPRENUM refer to one cluster and not to the whole two-level architecture. If the
"communication bottleneck" occurs in the node or on the clusterbus level, the simu
lation might be quite realistic. If, however, the communication times are determined
by the upper bus network, either a more sophisticated simulation should be used (as
in [30]) or a (modified) one-level simulation has to be applied to the upper level of
the architecture.

7.3 Some Results

7 .3.1 Analysis of 2D Multigrid Efficiency

Consider a two-dimensional multigrid algorithm which requires performing relax
ations, projections and interpolations. We will distribute the problem over a set
of processors by subdividing the grids into rectangular subgrids, with one assigned to
each processor. To be more specific, we will assume that we are on an N == n x n grid,
with n == 16m, where m is a power of 2: m == 2l, and that the data are distributed
in square blocks of size m x m to each of 256 processors. Assume further that each

50

relaxation, interpolation or projection operator involves R, I or P arithmetic opera
tions per grid point and 1 communication operation per boundary point. Depending
on the exact multigrid strategy used the amount of communication involved in pro
jection is often less than in relaxation, but we ignore this point. Finally we assume
that the time T(w) (in seconds) required to send w words of data to a "neighboring"
processor is represented by a linear relationship: T(w) = a+ f3w, where o: represents
the start-up cost for communicating an arbitrarily short message, while f3 represents
the incremental cost per word for sending longer messages. We will denote by b the
time (in seconds) required to execute a typical elementary arithmetic operation, such
as an add or a multiply.

In order to minimize the overhead from communication startup, we will buffer
all of the boundary data from a side of a square, and then communicate it in one
operation. Thus only 4 communication operations _are required on each grid level
for a relaxation, projection or interpolation. The complete computational cost of a
multigrid V-cycle, with v iterations performed per grid level is then:

Tcomp = (vR + P + !)8(1 + 1/4 + 1/16 ...)m2

~ 4/3(vR + P +!)8m2
,

while the corresponding time spent in communication is:

Tcomm = (v + 2)(4T(m) + 4T(m/2) + 4T(mj4) + ...)
4(v + 2)(la + (1 + 1/2 + 1/4 + ...)m/3)

~ 4(v + 2)(la + 2mj?).

The factor 2 in the final coefficient of j3 above should actually be 2 - 21
-

1, which is
very close to 2 as long as the number of multigrid levels lis more than say 3. Similarly
the coefficient 4/3 in Tcomp should actually be 4/3(1- 4-1), which is again very close
to 4/3 for moderately large l.

We have assumed that the computational time per grid level is proportional to the
number of grid points - which will not be true when there are fewer grid points than
processors. The above formula for computation is therefore a good approximation
only for machines with moderate parallelism, or for multi grid cycles where the coars
est grids are not too coarse. Note that vector nodes effectively increase the degree of
inherent parallelism in the machine, requiring increased processing time per grid point
even when there are several grid points per processor. We have also assumed above
that communications in different directions cannot be overlapped and that commu
nication is not limited by the global band-width. If communication in each of the
four directions can be overlapped, then Tcomm becomes 4 times smaller. It is likely
that for some machines the communication startup cannot be overlapped, whereas
the remainder of the communication can be. In that case the coefficient of j3 above
would be 4 times smaller. However we do not make this assumption in the following
discussions.

With the above assumptions, the resulting computational efficiency is then given
by:

E = Tcomp/(Tcomp + Tcomm) = 1/(1 + Tcomm),
where Tcomm = Tcomm/Tcomp, the ratio of communication time to computation time,
satisfies:

51

3(v + 2)(la + 2mf3)
Tcomm ~ (vR + p +!)8m2

For large problems, defined as those where m ~ laj j3, this implies:

1
E~ ----~--~--

1 6(v+2) f3 + (vR+P+I) em

Thus the efficiency for large problems can be arbitrarily close to 1. We note that our
definition of large problem depends on the number of multigrid levels l, as well as
on the message startup cost a. The reason is simply that even though coarse grids
involve only a few points, they still incur the same message startup cost as on a fine
grid. Thus as the number of levels increases, communication inefficiency also increases
unless the startup cost is negligible.

7 .3.2 A Concrete 2D Example

As an interesting test, we consider the above case for the current SUPRENUM ma
chine which has 8 Mbytes of memory per node, a startup cost a for communication
of 2000 J.L sec, and a per-word transfer cost {3 of about 1 J..L sec. We will assume a
computation rate of 8 1-ffiops, so that 5 = 1/8J.L sees, and 8-byte floating point words.
For relaxation of the simplest variable coefficient 5-point PDE discretization we would
have approximately 9 floating point operations per point, and we assun1e that inter
polation and projection are similar, so that R = P = I = 9. The largest problem
that will fit comfortably on 256 nodes would haveN= 64 ·106 grid points (two words
required per point), so that m = 512. It follows that the number of levels l would be
9. The ratio laj j3 is then about 18000 so that the problem is not "large" as defined
above. Inserting the above numbers into the expression for r comm we obtain:

1
E ~ ~ s(9·2ooo+2·512·1) = ·84

1 + 9v+18 5122

which indicates an efficient solution. Since the term la is much larger than 2m{3 we
see that even for this large problem, communication is still dominated by the startup
costs. Thus if overlapping of the data transmission were allowed on different channels
(without overlapping of the startup cost) there would be only a small improveinent
in efficiency. Similarly a substantially slower data transfer rate than 1 word per J.L
sec, or equivalently some saturation of communication bandwidth, could be tolerated
with little decrease in efficiency. Clearly decreasing the communication startup cost
a and/ or using fewer multigrid levels 1 will be the best ways to improve efficiency for
this problen1. The latter approach may result in an increased number of iterations
however. One possibility is to switch to a different solution strategy at a certain level
-for exan1ple to transfer data to a single processor and use a direct solver there [28].
Note that these estimates have also ignored the difficulty of using all processors, or of
attaining full efficiency from vector nodes,when processing on coarse grids.

52

7 .3.3 Analysis of 3D M ultigrid Efficiency

Practical problems of interest are more likely to be three-dimensional than two
dimensional, which qualitatively changes the above estimates. In the three dimen
sional case we obtain for a distribution of a cubic grid of N = n x n x n points into
cubic blocks each of size m x m x m, with m = 21,

Tcomp (vR + P + 1)(1 + 1/8 + 1/64 + ...)8m3

~ 8/7(vR + P + J)8m3
,

while the corresponding time spent in communication is:

Tcomm (v + 2)(6T(m2
) + 6T(m2 /4) + 6T(m2 /16) + ...)

- 6(v + 2)(la + (1 + 1/4 + 1/16 + ...)m2f3)
~ 6(v + 2)(la + 4/3m2f3). '

We have again assumed that the computational time per grid level is proportional to
the number of grid points - a reasonable approximation only for moderately parallel
machines or for grids that do not become too coarse. We have also assumed again that
communications in different directions cannot be overlapped and that communication
is not limited by the band-width. If communication in each of the six directions can be
overlapped, then Tcomm becomes 6 times smaller, while if communication transmission
alone can be overlapped, then the coefficient of f3 becomes 6 times smaller. While
the latter is a possibility for SUPRENUM, we do not assume that in the following
analysis.

The resulting computational efficiency is then given by:

E = Tcomp/(Tcomp + Tcomm) = 1/(1 + Tcomm),

where Tcomm = Tcomm/Tcomp, the ratio of communication to computation, satisfies:

_ 21(v + 2)(la + 4/3m2 f3)
TcomTn = 4(vR + p + J)8m3 .

For large problems, defined now as those where m ~ jZ;;Ji3, this implies:

1
E~------

1 + 7(v+2) {3
vR+P+l em

7.3.4 A Concrete 3D Example

As an interesting test, we consider the three-dimensional case for the current SUPRE
NUM machine (parameters as in Section 7.3.2). For relaxation of the simplest variable
coefficient 7-point PDE discretization we would have approximately 13 floating point
operations per point, and we assume that interpolation and projection are similar, so
that R = P = I = 13. The largest problem that will fit on 256 nodes would have
N = 128 · 106 grid points (two words required per point), so that m = 80 at most. It
follows that the number of levels would be around 6. The ratio la/ f3 is then about

53

12000 so that the problem is not "large" as defined above. The efficiency is found
from the expression for T comm to be:

1
E = 1 + 21(v+2) 8(6·2000+4/3·802·1) == .89

4(13v+26) 803

Note that these estimates have ignored the difficulty of using all processors, or of
attaining full efficiency from vector nodes, when processing on coarse grids.

7.3.5 Comparison of 2D and 3D Efficiency

Note that while the behavior of the efficiency E as a function of m for the "large" three
dimensional case above is similar to that for the "large" two-dimensional case, the
asymptotic efficiency in three dimensions is actually much worse for the same number
of grid-points since m is related to the number of grid points N by m == 1/16N112

in two-dimensions, but by m == l/6.35N113 in three dimensions. Sincethe maximum
number of points N is hardware limited by the available memory, it appears to be
much harder to achieve high efficiency for the three-dimensional case.

However this conclusion is not applicable to the current SUPRENUM machine,
primarily because the largest problem that can be solved is not "large" as defined
above for either two or three dimensional problems. This fact alters the efficiency of
the two-dimensional problems, with less effect on the three-dimensional case, resulting
in more or less comparable efficiencies for the two cases for the largest problems
that will fit on SUPRENUM. This is in turn traced to the fact that communication
startup costs dominate the communication costs in two-dimensions much more than in
three dimensions. The reason is that in three dimensions so much data is transferred
en masse per processor that the startup cost is now approximately half the total
communication cost, whereas it constitutes about 95 % of the total communication
cost in two-dimensions.

It follows that for three dimensional problems there is less advantage to reducing
the number of grid levels or the communication startup cost, while there is a greater
advantage to overlapping the data transmission part of communication in different
directions, even if communication startup is not overlapped. In fact, if communication
transmission is overlapped (reducing the effective size of f3 correspondingly), then the
three-dimensional efficiency rises to .92 as against .84 for the two-dimensional case.

Note that we have discussed above the case of the simplest discretizations of vari
able coefficient problems. Efficiencies for the constant coefficient Poisson equation
discretized on a rectangular grid would be somewhat worse, because there is then
relatively less computation per communication. However the vast majority of real ap
plications involve local numerical computations that are substantially more complex
than those involved above. Such computations can be expected to perform at higher
efficiencies than those we have estimated. As an example, the solutions of hyper
bolic equations encountered in many fluid flow problems require very large amounts
of numerical computation to be performed before a communication is required.

54

8 Some Measured Results on Parallel Computers

8.1 Multigrid on Vector Co1nputers
A standard multigrid code for the solution of the 2D Helmholtz equation with Dirichlet
boundary conditions on rectangular domains has been optimized for different vector
computers: Cray X-MP, Fujitsu VP 200, and CDC Cyber 205. (This section is ab
stracted from [32].) The multigrid components: 2D red-black pointwise relaxation,
bilinear interpolation, half weighting restriction and a higher order full multigrid inter
polation, can be vectorized in a straightforward manner over one coordinate direction.

We summarize the results in Table 7. The best results were achieved for the
Cray X-MP. The major reason is the shorter start-up-time compared with the other
machines, since in multigrid methods large parts of the problem are solved on coarser
grids where the vector length is automatically short. For very fine discretizations,
the performance of the Fujitsu VP 200 was better. The reason is a much higher
discrepancy between short and long vector performance on this machine and the very
high asymptotic performance compared to the Cray X-MP.

While memory access with stride 2 did not cause much degradation of the per
formance on the Cray X-MP, a data access stride of 64 bits was essential for good
performance on the Fujitsu VP 200. This can be achieved by using either stride 2,
which is natural from the numerical algorithm point of view, and 32 bit arithmetic, or
by using red-black instead of lexicographic ordering. In the latter case a consequence
will be shorter vectors in the grid transfers or expensive reordering operations. At
the time the tests were done, only consecutive data access was possible on the CDC
Cyber 205.

In order to achieve longer vectors, field-wise (plain) vectorization was introduced in
the most time consuming part of the algorithm, i.e. the relaxation step. In field-wise
vectorization the 2D arrays are treated as lD vectors, thus giving quadratic vector
length compared to the case where vectorization is performed with lD subarrays of
the 2D arrays (vectorization over one coordinate direction). On the coarse grids much
higher performance was achieved because of quadratic vector length. On fine grids
one dimensional vectorization was cheaper, because extra or masked operations had
to be introduced on the Dirichlet boundary in field-wise vectorization. Generally, the
above strategy is not applicable efficiently to the other multigrid components, because
constant stride over the whole 2D grid, which is essential for vectorization, can only
be achieved by executing twice as many operations as necessary. Only on the CDC
Cyber 205 was this strategy the most efficient one, because of the high vector start-up
time.

Results with a more complex multigrid method, for a second order elliptic par
tial differential equation with variable anisotropic coefficients, show that the above
strategy cannot be applied if alternating zebra line relaxation is used instead of point
relaxation. The average performance of this code was similar to that of the first model
problem.

Summing up, the vectorization speed-up which was achieved with the multigrid
code was very satisfactory compared to other methods such as the conjugate gradient
method, which is inherently more efficiently vectorizable. For very large problems,

55

I Multigrid V- cycle I
Grid points 1332 11292 1 5132 11

Cray X-MP 1 scalar 7 9 9

Cray X-MP 1 standard vect. 21 58 83

Cray X-MP 1 field-wise vect. 34 78 95

Cray X-MP 2 microtasking vect. 27 92 146

Fujitsu VP 200 stand. vect. (32 bit) 16 87 193

Fujitsu VP 200 field-w. vect.(32 bit) 26 124 194

Fujitsu VP 200 field-w. vect.(64 bit) 22 70 90

CDC Cyb. 205-2 field-wise vect. 44 102 -

Table 7: Performance of standard multigrid on vector computers in Mflops

the major applications area of multigrid methods, vectorization speed-up factors of
almost the same size were achieved. The multigrid method is then to preferable due
to its superior numerical efficiency.-

The multigrid code was also tested on the Cray X-MP 2, a shared memory vector
computer with two processors. Because of the low granularity of the tasks between
synchronization the results with macro- and microtasking have been more or less
disappointing. When combining parallelization over the outer loop and vectorization
over the innermost loop the synchronization overhead was so large that reasonable
efficiencies have only been achievable for very large problems. It should be mentioned
here that the above model problem is a worst case study for this class of computers,
because of the small number of operations that has to be performed at each grid point.
For more complex problems better efficiencies should be expected.

In contrast to the Cray X-lVIP 2 the results on the Alliant FX 8 with four processors
are very satisfactory. The major reason is the much lower synchronization overhead
compared to the arithmetic computation speed. ,

A very detailed description of all tests, discussions of the results and conclusions
can be found in [32].

8.2 Multigrid on the Caltech Hypercube

A 3D-Poisson MG-solver was implemented on the CalTech Mark II hypercube [48].
Multiprocessor efficiency rates are given in Table 8. Obviously, the problem with
N = 83 grid points is too small for a system with P = 32 nodes. However, even
medium-size problems with N = 323 grid points achieve an MP-efficiency of more

56

than 0.5.

N time S(N, 32) E(N,32)

83 0.306 6.8 0.21

163 0.847 12.4 0.39

323 3.370 18.6 0.58

Table 8: Computing time, MP-speed-up and MP-efficiency for a multigrid method
for the 3D-Poisson equation, with periodic boundary conditions using'V-cycles, with
V1 2, v2 = 1 relaxations, on the Cal Tech Mark II hypercube.

Table 9 gives a comparison of the MG-solver with a standard relaxation solver
and with a FFT solver. Although the MP-efficiency of the relaxation and the FFT
solver is considerably better than for the MG-solver, the absolute computing time is
significantly worse. So both, MP- and numerical efficiency are important in designing
good algorithms for multiprocessor systems.

method time S(323, 32) E(323
, 32)

relaxation 381.3 25.9 0.81

MG 3.4 18.6 0.58

FFT 22.0 29.8 0.93

Table 9: Computing time, MP-speed-up and MP-efficiency for different solvers applied
to the 3D-Poisson equation with periodic boundary conditions and N = 323 grid
points, on the CalTech Mark II hypercube.

8.3 Multigrid on the Intel iPSC

Example 1: Poisson's equation represents one of the hardest problems among partial
differential equations for parallel computers. The reason for this is that the ratio of
arithmetic and communication work is very bad in this case.

The parallel multigrid code MGDEMO (for details see [28]), which solves the 2D
Poisson equation, was implemented on the Intel iPSC /2. Table 10 shows some results.
The following parameters were used in the algorithm: V-cycles, half injection as re
striction, red-black relaxation, linear interpolation of corrections, two relaxation steps
before, one after the coarse grid correction. On very coarse grids (grids with only
two points in each direction per process) the number of active processes was reduced
to one by agglomeration of the whole distributed application. MGDEMO is portable
between different types of parallel machines because all communication between pro
cesses is performed by routines of the SUPRENUM communications library.

57

processors points mode time/ cycle (sec) Mfiops efficiency
16 == 4 X 4 17 X 17 scalar 0.05 0.15 0.11
16 = 4 X 4 33 X 33 scalar 0.08 0.35 0.14
16 = 4 X 4 65 X 65 scalar 0.13 0.86 0.26
16 = 4 X 4 129 X 129 scalar 0.26 1. 72 0.45
16 = 4 X 4 257 X 257 scalar 0.63 2.77 0.68
16 = 4 X 4 513 X 513 scalar 1.97 3.54 0.86
16 = 4 X 4 1025 X 1025 scalar 7.07 3.92 0.95

16 = 4 X 4 17 X 17 vector 0.07 0.11 -
16 = 4 X 4 33 X 33 vector 0.11 0.27 -
16 = 4 X 4 65 X 65 vector 0.17 0.68 -
16 = 4 X 4 129 X 129 vector 0.28 1.61 -

16 = 4 X 4 257 X 257 vector 0.48 3.64 -
16 = 4 X 4 513 X 513 vector 0.94 7.38 -

16 = 4 X 4 769 X 769 vector 1.52 10.25 -

1 = 1 X 1 257 X 257 scalar 6.64 0.26 1.00
4=2x2 257 X 257 scalar 1.84 0.94 0.93
16 = 4 X 4 257 X 257 scalar 0.63 2.77 0.68

1 = 1 X 1 129 X 129 vector 0.68 0.65 -
4==2x2 129 X 129 vector 0.38 1.17 -
16 = 4 X 4 129 X 129 vector 0.28 1.61 -

1 = 1 X 1 193 X 193 vector 1.17 0.82 -
4=2x2 193 X 193 vector 0.57 1.71 -
16 = 4 X 4 193 X 193 vector 0.35 2.64 -

Table 10: MGDEMO benchmarks on the Intel iPSC/2

The tests show efficiencies near 0.5 in scalar mode (compiler vectorization feature
switched off) even for medium problem sizes such as 1000 points per process.

In the case of vector mode there are no efficiency rates listed in the table. For fair
results, the whole problem would have had to be run on one single processor (differing
vector lengths) and this was not possible because the iPSC /2 vector boards available
at the GMD, where these tests were carried out, only have 1 Mbyte of vector memory.
Though all arithmetic parts of the code were vectorized, the scalar code shows a
slightly better performance for problems up to a size of about 32 x 32 points per
processor. This is due to a quite high vector start-up time. For larger problems the
vector mode proves to be faster than the scalar one. For the largest problem fitting
on the vector boards the machine performed at more than 10 Mfiops.

Example 2: Another example is the generalized biharmonic boundary value prob
lem

~2u+ a(x,y)~u+ b(x,y)u = f(x,y)

58

with boundary conditions given for u and the normal derivatives Un. For multigrid
algorithms it is useful to rewrite the differential equation as a system

6v + a(x, y)v + b(x, y)u

Lu- v

f(x,y)
0.

Information on the numerical treatment of such biharmonic type systems can be found
in [34, 35, 45].

processors points mode time/ cycle (sec) Mfiops
1 = 1 X 1 17 X 17 scalar 0.58 0.13
1 = 1 X 1 33 X 33 scalar 1.43 0.16
1 = 1 X 1 65 X 65 scalar 3.76 0.18
1 = 1 X 1 129 X 129 scalar 11:24 0.20

4=2x2
I

17 X 17 scalar 0.45 0.19
4=2x2 33 X 33 scalar 0.87 0.28
4=2x2 65 X 65 scalar 1.72 0.43
4=2x2 129 X 129 scalar 3.96 0.59
4=2x2 257 X 257 scalar 11.11 0.73

16 = 4 X 4 17 X 17 scalar 0.43 0.21
16 = 4 X 4 33 X 33 scalar 0.75 .. 0.34
16 = 4 X 4 65 X 65 scalar 1.24 0.65
16 = 4 X 4 129 X 129 scalar· 2.16 1.19
16 = 4 X 4 257 X 257 scalar 4.46 1.96
16 = 4 X 4 513 X 513 scalar 11.71 2.65

Table 11: Timing of a parallel multigrid algorithm for the generalized biharmonic
equation

The results in Table 11 were obtained by a multigrid algorithm which consists of
F-cycles, Full Weighting, linear interpolation of corrections and red-black relaxation.
Additional relaxations were performed along the boundaries with the Un boundary
conditions. One relaxation step was executed before and one after the coarse grid
correction. Seven relaxation steps were applied to solve the problem on the coarsest
grid, which consisted of 5 x 5 points in all test cases of Table 11.

For example, the results of the 129 x 129 problem on 1 and 16 processors show
that the efficiency is

11.24
E = ~ 0.33

2.16 . 16
It is not surprising that this efficiency is worse than that of l\1GDEMO for the cor
responding problem size in Table 10 because F-cycles, with more communication on
coarse grids, were applied for the biharmonic problem. On the other hand, the times
for the 129 x 129 problem on 1 processor and for the, approximately 16 times larger,
513 x 513 problem on 16 processors are approximately the same, indicating very good
efficiency of the parallel application.

59

Example 3: A parallel multigrid solver for 3D anisotropic elliptic problems (see
Section 4.1) was developed using the communications library.

relaxation processors points efficiency

8=2x2x2 17x17x17 0.80
8=2x2x2 33 X 33 X 33 0.92

16 = 4 X 2 X 2 17x17x17 0.54
3D-point 16 = 4 X 2 X 2 33 X 33 X 33 0.76

16 = 4 X 2 X 2 48 X 48 X 48 0.85
;

32 = 4 X 4 X 2 17x17x17 0.37
32 = 4 X 4 X 2 33 X 33 X 33 0.60
32 = 4 X 4 X 2 48 X 48 X 48 0.73

8=2x2x2 17x17x17 0.64
8=2x2x2 33 X 33 X 33 0.82

16 = 2 X 2 X 4 17x17x17 0.37
3D-(x,y)-plane/2D-point 16 = 2 X 2 X 4 33 X 33 X 33 0.60

16 = 2 X 2 X 4 48 X 48 X 48 0.77

I
32 = 2 X 4 X 4 33 X 33 X 33 0.37
32 = 2 X 4 X 4 48 X 48 X 48 0.56

3D-alternating-plane/ 8=2x2x2 17x17x17 0.59
2D-alternating-line 8=2x2x2 33 X 33 X 33 0.75

Table 12: Efficiency of parallel 3D multigrid algorithms on the Intel iPSC /2

Depending on the type of the anisotropy different smoothing schemes have to be
applied for different problem classes. In the parallel multigrid solver a plane relax
ation step is performed by one V -cycle of a 2D multigrid algorithm. This 2D solver
uses point or line relaxation for smoothing, depending again on the anisotropy. The
optimization of the communication within this 2D solver is of considerable importance
for the efficiency of the parallel code. The results of Table 12 are from [18] (which
also includes further details and more results).

In all tests on the Intel iPSC /2 (Table 12) the efficiencies are quite high, even
for relatively small problems. If more complex smoothing schemes like line or plane
relaxation are used, the efficiencies become somewhat smaller because of the growing
communication overhead. Line and plane relaxations themselves require communica
tion between the processes. Thus, for a 17 x 17 x 17 problem on 2 x 2 x 2 processors,
the efficiency is 0.8 if point relaxation is used. It decreases to 0.64 for plane relax
ation if the 2D multigrid solver uses point relaxation, and to 0.59, for alternating
plane relaxation with alternating line relaxation.

Example 4: The 2D-Stokes MG solver (see Section 5.2) was implemented on

60

the Intel iPSC. Figure 8 shows the MP-efficiency rates in relation to the number of
processors and the problem size. For a 64-hypercube, a problem size of .LV = 2562 grid
points is necessary in order to achieve an efficiency of more than 0.5.

512 x 512 cells

256 x 256 cells

128 x 128 cells

64 x 64 cells

32 x 32 cells

processors

Figure 8: Parallel MG-code for the 2D-Stokes problem. Each curve shows the MP
efficiency for constant problem size N and increasing P on the Intel iPS C.

8.4 Multigrid on SUPRENUM

As a first test, the performance of the parallel multigrid code MGDEMO, which solves
the 2D-Poisson equation, was measured on SUPRENUM. Table 10 shows a selection
from the results. For more information see [26, 33].

Parameters used in the algorithm were: V-cycles, half injection, red-black relax
ation, linear interpolation of corrections, two relaxation steps before, one after the
coarse grid correction. On very coarse grids no agglomeration was performed. In
stead, an appropriate number of relaxations was carried out on the coarsest grid. The
program was fully vectorized.

Though multigrid for the Poisson equation is a very hard test for obtaining good
parallel efficiency, the Mfiops rates indicate that the performance increases nearly
linearly with the number of processors.

61

processors points Mflops
1 513 X 257 4.0
2 513 X 513 6.4
4 1025 X 513 11.7
8 1025 X 1025 23.7

16 2049 X 1025 47.5
64 4097 X 2049 169.0

Table 13: MGDEMO benchmarks on SUPRENUM

~.5 Multigrid on the Connection Machine (CM)
We will now see that for certain hierarchical algorithms there are fundamental ob
stacles to using massive parallelism. The case in point is the implementation of a
standard multigrid algorithm on the CM-2. The implementation for the CM-1 is
described in detail in [40] and we summarize the main ideas here. The CM-2 imple
mentation follows exactly the same strategy.

As a test problem we solved the five-point discretized Poisson equation for a rect
angular grid, using modified Jacobi relaxation (Jacobi relaxation with relaxation pa
rameter w) on each grid level. Points of the finest grid are assigned to distinct virtual
processors. Coarse grid points are allocated to the same processor as their corre
sponding fine grid point. This simplifies the interactions between grid levels, while
somewhat increasing the cost of coarse grid iterations, since coarse grid- points are
physically far apart. However, much more serious is the fact that on coarse grids it
is impossible to keep all processors active. In the extreme case of a 1 x 1 grid, the.
efficiency can be at most 1/65536.

We present performance curves measured for multigrid on the CM-2 in Figure 9.
The bar chart shows the lVIflops generated in solution as a function of the number of
grid levels utilized. The case of one grid level is simply solution by relaxation, and
gives a very high Mflops rate since all processors are used at all times. As the number
of levels increases, Mflops drop dramatically as expected - most processors are sitting
idle most of the time. But the solution time drops steadily with increasing numbers
of grid levels (indicated by the curve in the same figure). Thus, multigrid is still a
substantial benefit on the CM, despite the poor overall efficiency.

In the following section we present a more highly parallelizable class of multiscale
methods which avoid the difficulties encountered with standard multigrid. For these
methods the bar chart in the figure stays essentially horizontal and at the height
corresponding to relaxation, and the solution time curve drops far more steeply as we
will see.

62

.._ Solution Time

2000

1800

1600

1400

1200

MFLOPS 1000

800

600

400

200

0

Multigrid Performance
2040x2040 Grid

2 3 4

levels

5

160

140

120

100

80
Time

60

40

20

0

Figure 9: Performance curves measured for multigrid on the CM-2 Connection Ma

chine

63

9 A Different Parallel Multigrid Approach

9.1 Parallel Superconvergent Multigrid

In the previous section, we have seen the difficulty with multigrid on massively parallel
machines. In the extreme case of the. coarsest grid, only a single processor is actually
doing anything useful. As a result the observed computational time is substantially
longer than one might have expected from the equivalent serial algorithm. Algorith
mically, parallel multi grid is an O(log N), rather than an 0(1) solution method.

We describe now an algorithm which we will call PSMG (Parallel Superconvergent
Multigrid) that takes a step towards solving this problem. The new algorithm still
requires O(log(N)) parallel operations for solution, but the constant multiplying the
log(N) is much smaller than before because of more rapid convergence of the solution
which therefore requires less iterations to reach a desired level of accuracy. This is
accomplished by solving many coarse grid problems simultaneously, combining their
results to provide an optimal finer grid approximation. No extra computation time is
involved (if N processors are available) since the extra coarse grid problems are solved
on processors which would otherwise have been idle.

We state a rigorous convergence criterion for PSMG, which gives a remarkably
sharp estimate of the rate of convergence for the case of constant coefficient operators.
For example, in some cases an upper bound for the multigrid convergence rate is within
a few percent of the supremum of the two-grid convergence rate taken over all grid
sizes, even for V-cycles with only one smoothing operation performed per grid level.
In some situations PSM G reduces to an exact (direct) solver. Numerical examples
involving elliptic operators on rectangular grids are also presented. For simplicity, we
will deal with periodic boundary data. For a complete exposition, including proofs
and numerical results, we refer to our papers [13, 14, 15, 16, 41].

9.2 The Basic Idea

Consider a simple discretization problem on a 1- dimensional grid. Standard multigrid
techniques work with a series of coarser grids, each typically obtained by eliminating
every other point of the previous grid. The error equation for the fine grid is then
projected to the coarse grid at every second point, the coarse grid equation is solved
approximately, and the error is interpolated back to the fine grid and added to the
solution there. Finally a smoothing operation is performed on the fine grid. Recursive
application of this procedure defines the complete multigrid procedure.

The basic idea behind PSMG is the observation that for each fine grid there are
two natural coarse grids - the even and odd points of the fine grid. (For simplicity we
assume that periodic boundary conditions are enforced). Either of these coarse grids
could be used at any point to construct the coarse grid solution, and both would pre
sumably provide approximately equivalent quality solutions. Multigrid traditionally
uses the even points at each grid level.

64

• • • • • • • • • • •
A typical fine grid .

• • • • • •
The standard n1ultigrid coarse grid - the even points .

• • • • •
The alternative multigrid coarse grid - the odd points.

Why not try to combine both of these coarse grid solutions to provide a fine
grid correction that is better than either separately? This should be possible since
in projecting from the fine grid, the odd and even points receive slightly different
data in general, and thus each represents slightly complementary views of the fine
grid problem to be solved. Thus it ought to be possible to find a combination of
the two solutions that is significantly better than either separately. It would follow
immediately that such a scheme would converge faster (fewer iterations) than the
corresponding standard multigrid scherne. As a concrete example, if the combination
of coarse grid solutions is simply the arithmetic average of the two standard coarse
grid interpolation operators, then the algorithm would converge at least as well as the
usual multigrid algorithm since the convex combination of two (iteration) operators
has norm bounded by the larger of the norms of the two operators.

Note that on a massively parallel machine the two coarse grid solutions may be
solved simultaneously, in the same time as one of them would take - we assume here
that the number of processors is comparable to the number of fine grid points. As will
be seen below, both coarse grid problems are solved using the same set of machine
instructions. Consequently the algorithm is well suited to SIMD parallel computers,
as well as to MIMD machines. On machines with more modest numbers of processors
it may still make sense to switch from standard MG to PSMG at grid levels such that
the number of grid points is comparable or less than the number of processors.

The idea outlined above extends naturally to multi-dimensional problems. In d
dimensions, 2d coarse grids are obtained from a fine grid by selecting either the even
or the odd points in each of the d coordinate directions. The fine grid solution is then
defined by performing a suitable linear interpolation of all 2d coarse grid points. This
procedure is repeated at every grid level.

Suppose we are required to solve a discrete algebraic equation A(L)u == f on a
rectangular grid G(L) with grid spacing or scale hL == 2-L h. We assume that the
operator A (L) has natural scale hL as would be true for a difference operator on G(L).
We introduce a spectrum of operators A(1),Z == 0, 1, ... ,L, each defined on all of G(L)
and of scale hz 2-t h. Starting from an initial guess u on G(L), we construct the
residual

65

where il is the exact solution and e is the error. We will use the residual to construct
an improved solution u' of the form:

u' = u + p(L)r,

where p(L) is a linear operator on G(L). This results in a new error

e' = il- u' = (I- p(L) A(L))e,

and a new residual
r' = A(L)e' =(I- A(L)p(L))r.

Convergence of the above procedure will be guaranteed provided that

The PSMG algorithm will be defined by the iteration operator p(L) (denoted M(L)
below) in terms of the multiscale operators A (l).

As is usual in multigrid approaches we arrive at the recursive PSMG algorithm by
first introducing a two-grid algorithm. The solution of the error equation A(L)e = r is
equivalent to the solution of the original equation A(L)u f. In the two-grid PSMG
algorithm, we approximate the error e by the exact solution e' of the coarse scale
equation:

A (L-l) e' = r.

Note that since A(L-l) is defined on all of Q(L), it follows that the error equation is
being solved on the fine grid, which may be regarded as the union of a set of coarse
grids. For example, in the 1-dimensional case the above equation is solved on both
the even and odd subgrids. It is for this reason that we prefer the name multiscale
rather than multigrid as a description of the algorithm. Having said this, we will lapse
frequently in the sequel into the more familiar use of the word coarse grid rather than
coarse scale! In such cases the term coarse grid will be understood to mean the grid
Q(L) viewed as a union of coarse grids.

Next we will combine the multiple coarse grid solutions defined by e' into a fine
grid correction e" by applying a linear combining transformation (interpolation) of
the form:

II _ Q(L) I e - e,

where the operator Q(L) remains to be specified. This leads to an improved fine grid
solution:

u" = u + e".

The final step involves a smoothing operation on the fine grid:

u"' SM(L)(u",f),

(I- z(L)A(L))u" + zL f.

with a corresponding iteration operator S(L) = I - z(L) A (L). By suitably choos
ing A (L), Q(L) and zCL), the above procedure should lead to convergent solutions.
In particular our strategy will involve choosing pairs Q(L)' z(L) which optimize the
convergence rate of the algorithm for given A (L).

66

We note that the two-grid PSMG algorithm may be described in the form:

with the decrease in residual given by:

where the two-grid iteration operator T(L) =I- T(L)A(L) is determined by:

~

We define the two-grid convergence rate r of this iteration procedure as the quantity:

r = sup p(T(L)),
L

where p(A) denotes the spectral radius of an operator A. Clearly r provides an upper
bound on the asymptotic convergence rate per iteration of the two-grid method on
any grid.

We obtain the full PSMG algorithm by recursive application of the two-grid algo
rithm described above. The corresponding error correction then takes the form:

where the multi-grid iteration operator M(l) =I- M(l) A(l) is determined by:

with M(o) = (A(o))-1 • The corresponding residual reduction operator is given by:

We define the multigrid convergence rate of this procedure as the quantity:

JL = sup p(M(l)).
l,L

Clearly JL provides a bound on the asymptotic convergence rate of PSMG on any grid.
Further bounds on the convergence rate JL will be derived that are extremely sharp.

9.3 Multiscale Convergence Rates

In this section we present an upper bound on the convergence rate of the PSMG algo
rithm, valid for the special but important case of translation invariant grid operators
A (l) • To motivate the bound, we rewrite the above recurrence relation for M(l) in the
form:

M(l) = T(l) + (S(l)- T(l))M(l- 1); M(o) = 0.

In the case that all operators are translation invariant, each operator may be repre
sented as multiplication by a function M(1)(k), T(t)(k) or S(l)(k), in frequency space,

67

and the above recurrence then applies to these functions for each wave-number k. We
conclude from the recurrence formula that liM II ::; JL*, where

JL* =sup max max {I T(l)(k) I /(1- I sU)(k)- T(Z)(k) I)}
L kEG(L) l~L

While this bound is the basis for rigorous proofs of convergence [16], we also have
used it to create a numerical method to optimize the convergence rate. The bound
JL* is a function of the operators zU) and Q(l). By performing a numerical non-linear
optimization procedure we attempt to choose the best possible Z and Q. We give
some examples in the following sections, referring to [13, 17] for complete details.

9.4 PSMG: Algorithmic Form

The PSMG algorithm works with a single grid of points Q(L) of size 2L in each di
mension (called the level L grid, or the fine grid), but utilizes operators with different
scales l ::; L on that grid. Thus the algorithm is strictly speaking multiscale rather
than multigrid. There are three basic operators: a finite difference operator A, an
interpolation operator Q and a smoothing operator Z. All operators are periodic on
the grid in each coordinate direction. The PSMG algorithm extends naturally to both
Neumann and Dirichlet boundary conditions, with no increase in convergence rate.
The simplest approach to implementing Neumann or Dirichlet boundary conditions is
to use reflection or anti-reflection boundary conditions and an extended grid. However
we will discuss only the periodic case here for simplicity.

The operators at scale level l, denoted A (l), Q(l), and z(l), couple points at a
distance dz = 2L-l. Each levell operator is defined at all points of the grid Q(L). The
basic steps involved at levell, 0 < l::; L, for the solution of A(L)U = j, starting with
an initial guess u, are described by:

Algorithm PSMG(l,u,f):

1. Compute residual: r = f- AU)u.
2. Project residual to coarse grid: r = r (trivial injection).
3. Solve coarse grid residual equation using PSMG: e = PSMG(l-1,0,r).
4. Interpolate to fine grid: e' = Q(1)e.
5. Apply a relaxation: e" =(I- Z(l)A(1))e' + z(l)r.

6. Compute and return the new solution: u" = u + e".

An exact solver is utilized on the coarsest grid. The PSMG strategy is to choose Q(l)

and z(l) as functions of A (l) in such a way as to optimize the convergence rate of the
above algorithm. Explicit choices for Q(l) and z(l) were given in [13] for the cases
where A(I) represents either the standard 5-point or Mehrstellen discretizations of the
Laplacian. In each case we provided upper bounds on the convergence rate for the
procedure which are uniform in l.

9.4.1 Application to Poisson's Equation

In order to complete the description of the algorithm it is essential to define the
operators Q(l) and z(l) used for interpolation and smoothing. In this section, we

68

describe how to choose Q(l) and z(l) in an optimal way for the special case of an
operator which has translation invariant coefficients. We will illustrate the ideas for
the Poisson equation discretized on a periodic rectangular grid G(L) of N = n * n
points, n = 2L, which we label with the index i = (i 1 , i 2), 0 :; i 1 , i 2 < n. We will use
two discretizations of the negative Laplacian -~ in our analysis. The first of these is
the standard five-point discretization defined by

where e~l) are integer vectors of length d(l) = 2L-l in the coordinate directions in index
space, or alternatively by the familiar five- point star notation:

The second discretization we will study is the more accurate Mehrstellen discre+,ization
represented by the nine-point star

[

-1 -4 -1]
A~z) = (6hf)- 1 -4 20 -4 .

-1 -4 -1

Similarly, we will choose the operators Q(z) and z(l) to be defined by simple symmetric
three parameter nine-point star operators (with appro:priate scale length):

For simplicity, we take the parameters qi and Zi to be independent of the scale pa
rameter l.

Since all of these operators are translation invariant, they are diagonalized by
the discrete Fourier transform. The analysis of the PSMG algorithm then becomes
particularly convenient. To get an improved convergence rate we have also used a
25-point star operator to define Q:

q22 q12 q2 q12 q22

q12 qu ql q11 q12
Q(l)- q2 ql qo ql q2 25 -

q12 qll ql qll q12
q22 ql2 q2 ql2 q22

9.5 PSMG Performance

We have analyzed both 5-point and 9-point discretizations using a simple model of
massively parallel computation. The model includes the assumption of 1 processor
per fine grid point, nearest neighbor communication to 4 neighbors, sufficient parallel

69

bandwidth for PSMG communications to precede without collisions, but does not
allow for overlap of communication with computation. The model assumes an SIMD
architecture, although of course an MIMD architecture would provide results that are
at least as good.

In the paper [13] we used the bound J.L* introduced above as a basis for optimizing
the convergence rate: to be specific, we optimized the bound as a function of the
coefficients of Q and Z, resulting in choices for Q and Z that yielded convergence rates
at least as good as J.L*. Our earlier results from [13] have been improved substantially
recently in the paper [15]. In [15] we optimize the actual convergence rates J.L(L), for a
suitably fine grid L (e.g. L = 11). Because all operators are self-adjoint, the spectral
radius of the multigrid iteration is just the maximum of the frequency space kernel
of the operator. Our new procedure involves explicit evaluation of the kernel M(l)(k)
for all frequence pairs k in G(L), which we show can be accomplished in only. O(N)
operations (on a serial machine). We then optimize the maximum of this kernel as a
fu.nction of Q and Z, resulting in better parameters and convergence rates than were
obtained from JL*.

For a true measure of efficiency of an iterative method it is necessary to consider
the work involved in an iteration as well as the convergence rate obtained. If the
asymptotic convergence rate of a method is p and the method requires w operations
per iteration, the normalized operation count is defined as w / log10 p, and measures
the parallel work required per grid level to reduce the error by a factor of 10. In a
parallel method, it is necessary to track both arithmetic and communication work.

For several PSMG methods we obtained asymptotic convergence rates, the num
ber of parallel arithmetic and communication operations required on each grid per
iteration, and also the normalized operation count for arithmetiC and communication
[15]. We summarize the results for some cases in Table 14. In the table we use the
notation PSMG9-25, for example, to denote the PSMG algorithm with a 9-point A
and a 25-point Q. The Z operator is always taken to be a 9-point stencil.

convergence steps per level normalized steps
method rate comp. comm. comp. comm.
PSMG5-9 .08867 14 12 13.31 11.40
PSMG5-25 .02504 22 16 13.74 9.99
PSMG9-9 .02165 16 12 9.61 7.21
PSMG9-25 .00165 24 16 8.62 5.75

Table 14: PSM G convergence rates

The corresponding coefficients for the interpolation operator Q and the smoothing
operator Z are (in the notation of [13, 15]):

70

PSMG5-9: qo = .25 ql = .125 qn = .0625
z0 = .278079 Z1 = .0534577 z11 = .0125615

PSMG5-25: qo = .361017 ql = .11458 qn = .0625
q2 = -.0309162 q12 = .00521024 q22 = .00316188
z0 = .361452 Z1 = .0891718 z11 = .0293793

PSMG9-9: qo = .25 ql = .125 qll = .0625
z0 = .300589 Z1 = .0432465 Z11 = .0139994

PSMG9-25: q0 = .34152 ql = .0995677 qll = .Q625
q2 = -.0199225 q12 = .0127161 q22 =c.00295755
z0 = .283286 Z1 = .0323815 z11 = .00835 795

9.6 How Does PSMG Compare with Standard MG?

Normalized convergence rates provide a basis for comparison of PSMG with the fast
red-black Poisson solvers of standard multigrid. The comparison is of course mean
ingful only for the massively parallel design range of PSMG - the case where there
are about as many (or more) processors as fine grid points. Recent papers by N.
Decker [11, 12] describe a very efficient implementation of a parallel version of a vari
ant (RNTRB) of the standard red-black multigrid algorithm. In [15] we show that
the PSMG9-25 method requires less than one half of the arithmetic and one fifth of
the communication required by RBTRB. RBTRB, as implemented in [12], requires

, 13 arithmetic and 21 communication operations for a convergence rate of .19, yield
ing normalized values of 18.02 parallel arithmetic and 29.12 parallel communication
operations per digit of error reduction, as compared to 8.62 arithmetic and 5. 75 com
munication operations required by PSMG. We have studied a wide range of standard
RB methods in [41], and there conclude that PSM G is close to four times more efficient
than the best of them.

We do not address in this paper the question of whether other standard multigrid
cycles may give better parallel performance than RB methods.

71

References

[1] Bank, R.E.; Dupont, T.: An optimal process for solving finite element equations.
Math. Comp. 36, 35-51, 1981.

[2] Bolduc, R.: SUPRENUM Fortran, syntax specifactions. SUPRENUM Report
7, SUPRENUM GmbH, Bonn, 1987.

[3] Bomans, L.; Hempel, R.: The Argonne/GMD macros in FORTRAN for portable
parallel programming and their implementation on the Intel iPSC/2. Arbeitspa
piere der GMD Nr. 406, GMD, St. Augustin, 1989.

[4] Brand, K.; Lemke, M.; Linden, J.: Multigrid bibliography. Arbeitspapiere der
GMD Nr. 206, GMD, St. Augustin, 1986.

[5] Brandt, A.: Guide to multigrid development. In [24].

[6] Brandt, A.: Multigrid techniques: 1984 guide with applications to fluid dynam
ics. GMD-Studie Nr. 85, 1984.

[7] Brandt, A.: Multigrid solvers on parallel computers. In "Elliptic Problem solvers
(M. Schultz, ed.)", Academic Press, New York, 1981.

[8] Briggs, W.: A Multigrid Tutorial. SIAM, Philadelphia, PA, 1987.

"[9] Chan, T.F.; Saad, Y.: Multigrid algorithms on the hypercube multiprocessor.
IEEE Trans. Comput. 35, 969-977, 1986.

[10] Chan, T .F.; Schreiber, R.: Parallel networks for multigrid algorithms: architec
ture and complexity. SIAM J. Sci. Comput. 6, 698-711, 1985.

[11] Decker, N .: On the parallel efficiency of the Frederickson-McBryan multi grid.
ICASE Report No. 90-17, February 1990.

[12] Decker, N .: A note on the parallel efficiency of the Frederickson-McBryan multi
grid algorithm. SIAM Journal on Scientific and Statistical Computing, to ap
pear.

[13] Frederickson, P.O.; McBryan, O.A.: Parallel superconvergent multigrid. in
Multigrid Methods: Theory, Applications and Supercomputing, S. McCormick,
ed., Marcel Dekker, New York 1988

[14] Frederickson, P.O.; McBryan, O.A.: Superconvergent multigrid methods. Cornell
Theory Center Preprint, May 1987.

[15] Frederickson, P.O.; McBryan, O.A.: Normalized convergence rates for the
PSMG Method. SIAM Journal on Scientific and Statistical Computing, January
1991, to appear.

[16] Frederickson, P.O.; McBryan, O.A.: Recent developments for parallel multigrid.
Proceedings of the Third European Conference on M ultigrid Methods, October
1990, ed. U. Trottenberg and W. Hackbusch, to appear.

72

[17] Gannon, D.; Van Rosendale, J.: On the structure of parallelism in a highly
concurrent PDE solver. J. Parallel and Distributed Comput. 3, 106-135, 1986.

[18] Gartel, U .: Parallel multigrid solver for 3D anisotropic elliptic problems. Ar
beitspapiere der GMD, Nr. 390, St. Augustin, 1989.

[19] Greenbaum, A.: A multigrid method for multiprocessors. Appl. Math. Comput.
19, 75-88, 1986.

[20] Grosch, C.E.: Performance analysis of Poisson solvers on array computers.
Report TR 79-3, Old Domion University, Norfork, VA, 1979.

[21] Grosch, C.E.: Poisson solvers on large array computer. Proceedings 1978 LANL
Workshop on vector and parallel processors (B.L. Buzbee and J.F. Morrison,
eds.), 1978. ·

[22] Hack busch, W.: Multigrid convergence theory. In [24 J.

[23] Hackbusch, W.: Multigrid methods and applications. Springer, Berlin, 1985.

[24] Hack busch, W .; Trot ten berg, U. (eds.): Multi grid methods. Proceedings of the
Conference held at Koln-Porz, November 23-27, 1981. Lecture Notes in Math
ematics Vol. 960, Springer, Berlin, 1982.

[25] Hempel, R.: The SUPRENUlvf communications subroutine library for grid
oriented problems. Argonne National Laboratory Technical Report ANL-87-23;
Argonne, 198 7.

[26] Hempel, R.; Lemke, M.; Schuller, A.: First performance results for grid-oriented
applications on SUPRENUM. Arbeitspapiere der GMD, to appear.

[27] Hempel, R.; Schuller, A.: Vereinheitlichung und Portabilitat paralleler Anwen
dersoftware durch Verwendung einer Kommunikationsbibliothek. Arbeitspapiere
der GMD, Nr. 234, GMD, St. Augustin, 1986.

[28] Hempel, R.; Schuller, A.: Experiments with parallel multigrid uszng the
SUPRENUM communications library. GMD-Studie Nr. 141, 1988.

[29] Herbin, R.; Gerbi, S.; Sonnad, V.: Parallel implementation of a multigrid
method on the experimental !CAP supercomputer. Appl. l\1ath. Comput. 27,
281-312, 1988.

[30] Kolp, 0., Mierendor:ff, H.: Performance estimations for SUPRENUM systems.
In [54].

[31] Kramer, 0.: SUPRENUM- Mapping Library, User Manual. Report, GMD, St.
Augustin, 1987.

[32] Lemke, M.: Erfahrungen mit Mehrgitterverfahren fur Helmholtz- ahnliche Prob
leme auf Vektorrechnern und Multiprozessor- Vektorrechnern. Arbeitspapiere
der GMD, Nr. 278, GMD, St. Augustin, 1987.

73

[33] Lemke, M.; Schuller, A.; Solchenbach, K.; Trottenberg, U.: Parallel processing
on distributed memory multiprocessors, GI-20. Jahrestagung, A. Reuter, ed.,
Inforrnatik-Fachberichte 257, Springer, 1990.

[34] Linden, J .: A multigrid method for solving the biharmonic equation on rectan
gular domains. Arbeitspapiere der GMD Nr. 143, GMD, St. AugU:stin, 1985.

[35] Linden, J .: M ehrgitterverfahren fiir das erste Randwertproblem der biharmonis
chen Gleichung und Anwendung auf ein inkompressibles Stromungsproblem.
GMD-Bericht Nr. 164, Oldenbourg Verlag, Miinchen, 1985.

[36] Linqen, J.; Lonsdale, G.; Schuller, A.: Parallel and vector aspects of a multigrid
Navier-Stokes solver. to appear.

[37] Linden, J .; Steckel, B.; Stu ben, K.: Parallel multigrid solution of the Navier
Stokes equations on general 2D domains. Parallel Computing 7, 461-4 75, North
Holland, 1988.

[38] Linden, J .; Stiiben, K.: Multigrid methods: An overview with emphasis on grid
generation processes. Arbeitspapiere der GMD Nr. 207, GMD, St. Augustin,
1986.

[39] Maitre, J.F.; Musy, F.: Multigrid methods: convergence theory in a variational
framework. SIAM J. Numer. Anal., 21, 657-671, 1984.

(40] McBryan, O.A.: Numerical computation on massively parallel hypercubes. In
Hypercube Multiprocessors 1987, ed. M. T. Heath, 706-719, SIAM, Philadel
phia, PA, 1987.

(41] McBryan, O.A.: Sequential and parallel efficiency of multigrid fast solvers. Uni
versity of Colorado CS Dept. Tech Report, September 1990.

[42] McBryan, O.A.; Van de Velde, E.F.: Hypercube algorithms and implementa
tions. SIAM J. Sci. Comput. 8, s227-s287, 1987.

[43] McCormick, S.F.; Ruge, J.: Multigrid methods for variational problems. SIAM
J. Numer. Anal., 19, 924-929, 1982.

[44] Ortega, J .M.; Voigt, R.G.: Solution of partial differential equations. on vector
and parallel computers. SIAM Rev. 27, 149-240, 1985.

[45] Schuller, A.: Mehrgitterverfahren fiir Schalenprobleme. GMD-Bericht Nr. 171,
Oldenbourg Verlag, Miinchen, 1988.

[46] Schwartz, J .: A taxonomic table of parallel computers, based on 55 designs.
Ultracomputer Note #69, Courant Institute, New York, 1983.

[47] Solchenbach, K.: Grid applications on distributed memory architectures: Imple
mentation and evaluation. In [54].

74

[48] Solchenbach, K.; Thole, C.A.; Trottenberg, U.: Parallel multigrid methods: Im
plementation on SUP RENUM-like architectures and applications. In Supercom
puting. Proceedings of the 1st International Conference on Supercompting, June
8-12, 1987 in Athens. Lecture Notes in Computer Science 297, Springer Verlag,
New York.

[49] Solchenbach, K., Trottenberg, U .: SUPRENUM - system essentials and grid
applications. In [54 J.

[50] Stiiben, K.; Trot ten berg, U .: lvfultigrid methods: Fundamental algorithms,
model problem analysis and applications. In [24].

[51] Thole, C.A.: Experiments with multigrid methods on the CalTech-hypercube.
GMD-Studie Nr. 103, 1985.

[52] Thole, C.-A.; Trottenberg, U .: Basic smoothing procedures for the multigrid
treatment of elliptic 3D-operators. Advances in M ultigrid Methods. Proceedings
of the Conference Held in Oberwolfach, December 8-13, 1984 (D. Braess, W.
Hackbusch, U. Trottenberg, eds.). Notes on Numerical Fluid Mechanics, Volume
11, 102-111. Vieweg, Braunschweig, 1985.

[53] Thole, C.-A.; Trot ten berg, U .: A short note on standard parallel multigrid al
gorithms for 3D problems. AMC, 27, 101-115, 1988.

[54] Trot ten berg, U. (ed.): Proceedings of the 2nd International SUPRElvUM Col
loqium "Supercomputing based on parallel computer architectures". in Parallel
Computing 7, North Holland, 1988.

[55] Zima, H.P.; Bast, H.-J.; Gerndt, H.M.: SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Comput. 6, 1-18, North Holland, Ams
terdam, 1988.

75

